These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 21242321

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Natural variation in the freezing tolerance of Arabidopsis thaliana: effects of RNAi-induced CBF depletion and QTL localisation vary among accessions.
    Gery C, Zuther E, Schulz E, Legoupi J, Chauveau A, McKhann H, Hincha DK, Téoulé E.
    Plant Sci; 2011 Jan; 180(1):12-23. PubMed ID: 21421342
    [Abstract] [Full Text] [Related]

  • 23. The CBFs: three arabidopsis transcription factors to cold acclimate.
    Medina J, Catalá R, Salinas J.
    Plant Sci; 2011 Jan; 180(1):3-11. PubMed ID: 21421341
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.
    Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF.
    Plant Cell; 2009 Mar; 21(3):972-84. PubMed ID: 19270186
    [Abstract] [Full Text] [Related]

  • 27. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance.
    Zwack PJ, Compton MA, Adams CI, Rashotte AM.
    Plant Cell Rep; 2016 Mar; 35(3):573-84. PubMed ID: 26650835
    [Abstract] [Full Text] [Related]

  • 28. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A.
    Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K.
    Plant Physiol; 2009 Aug; 150(4):1972-80. PubMed ID: 19502356
    [Abstract] [Full Text] [Related]

  • 29. CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy.
    Park S, Gilmour SJ, Grumet R, Thomashow MF.
    PLoS One; 2018 Aug; 13(12):e0207723. PubMed ID: 30517145
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana.
    Nägele T, Stutz S, Hörmiller II, Heyer AG.
    Plant J; 2012 Oct; 72(1):102-14. PubMed ID: 22640594
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology.
    Amme S, Matros A, Schlesier B, Mock HP.
    J Exp Bot; 2006 Oct; 57(7):1537-46. PubMed ID: 16574749
    [Abstract] [Full Text] [Related]

  • 37. BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis.
    Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S.
    Mol Plant; 2017 Apr 03; 10(4):545-559. PubMed ID: 28089951
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.