These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 21246355

  • 1. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae.
    Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A.
    Appl Microbiol Biotechnol; 2011 May; 90(3):997-1004. PubMed ID: 21246355
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR, Kwee NR, Kim H, Jin YS.
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [Abstract] [Full Text] [Related]

  • 6. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S, Mizuike A, Fukuda H, Kondo A.
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S.
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM, Saimura M, Kodaki T.
    J Biotechnol; 2013 Jun 10; 165(3-4):153-6. PubMed ID: 23578809
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.
    Kato H, Suyama H, Yamada R, Hasunuma T, Kondo A.
    Appl Microbiol Biotechnol; 2012 Jun 10; 94(6):1585-92. PubMed ID: 22406859
    [Abstract] [Full Text] [Related]

  • 14. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.
    Toivari MH, Aristidou A, Ruohonen L, Penttilä M.
    Metab Eng; 2001 Jul 10; 3(3):236-49. PubMed ID: 11461146
    [Abstract] [Full Text] [Related]

  • 15. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion.
    Hector RE, Dien BS, Cotta MA, Qureshi N.
    J Ind Microbiol Biotechnol; 2011 Sep 10; 38(9):1193-202. PubMed ID: 21107642
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae.
    Suga H, Matsuda F, Hasunuma T, Ishii J, Kondo A.
    Appl Microbiol Biotechnol; 2013 Feb 10; 97(4):1669-78. PubMed ID: 22851014
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF.
    Appl Microbiol Biotechnol; 2009 Sep 10; 84(4):751-61. PubMed ID: 19506862
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.