These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
263 related items for PubMed ID: 21249628
1. Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds. Zong C, Xue D, Yuan W, Wang W, Shen D, Tong X, Shi D, Liu L, Zheng Q, Gao C, Wang J. Eur Cell Mater; 2010 Sep 01; 20():109-20. PubMed ID: 21249628 [Abstract] [Full Text] [Related]
3. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study. Semyari H, Rajipour M, Sabetkish S, Sabetkish N, Abbas FM, Kajbafzadeh AM. Cell Tissue Bank; 2016 Mar 01; 17(1):69-83. PubMed ID: 26108195 [Abstract] [Full Text] [Related]
8. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z. J Biomed Mater Res A; 2010 Jul 01; 94(1):259-70. PubMed ID: 20166224 [Abstract] [Full Text] [Related]
11. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Biomaterials; 1998 Aug 01; 19(15):1405-12. PubMed ID: 9758040 [Abstract] [Full Text] [Related]
12. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds. Johari B, Ahmadzadehzarajabad M, Azami M, Kazemi M, Soleimani M, Kargozar S, Hajighasemlou S, Farajollahi MM, Samadikuchaksaraei A. J Biomed Mater Res A; 2016 Jul 01; 104(7):1770-8. PubMed ID: 26990815 [Abstract] [Full Text] [Related]
13. Study of mesenchymal stem cells cultured on a poly(lactic-co-glycolic acid) scaffold containing simvastatin for bone healing. Mendes Junior D, Domingues JA, Hausen MA, Cattani SMM, Aragones A, Oliveira ALR, Inácio RF, Barbo MLP, Duek EAR. J Appl Biomater Funct Mater; 2017 Apr 26; 15(2):e133-e141. PubMed ID: 28291900 [Abstract] [Full Text] [Related]
14. Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction. Chen Y, Ye SH, Sato H, Zhu Y, Shanov V, Tiasha T, D'Amore A, Luketich S, Wan G, Wagner WR. J Tissue Eng Regen Med; 2018 Jun 26; 12(6):1374-1388. PubMed ID: 29677404 [Abstract] [Full Text] [Related]
15. Polymer-ceramic composite scaffold induces osteogenic differentiation of human mesenchymal stem cells. Leong NL, Jiang J, Lu HH. Conf Proc IEEE Eng Med Biol Soc; 2006 Jun 26; 2006():2651-4. PubMed ID: 17946970 [Abstract] [Full Text] [Related]
17. Biocompatibility and enhanced osteogenic differentiation of human mesenchymal stem cells in response to surface engineered poly(D,L-lactic-co-glycolic acid) microparticles. Rogers CM, Deehan DJ, Knuth CA, Rose FR, Shakesheff KM, Oldershaw RA. J Biomed Mater Res A; 2014 Nov 26; 102(11):3872-82. PubMed ID: 24339408 [Abstract] [Full Text] [Related]
19. Performance of different three-dimensional scaffolds for in vivo endochondral bone generation. Yang W, Both SK, van Osch GJ, Wang Y, Jansen JA, Yang F. Eur Cell Mater; 2014 Jun 10; 27():350-64. PubMed ID: 24913441 [Abstract] [Full Text] [Related]
20. Physical impacts of PLGA scaffolding on hMSCs: Recovery neurobiology insight for implant design to treat spinal cord injury. Han IB, Thakor DK, Ropper AE, Yu D, Wang L, Kabatas S, Zeng X, Kim SW, Zafonte RD, Teng YD. Exp Neurol; 2019 Oct 10; 320():112980. PubMed ID: 31229638 [Abstract] [Full Text] [Related] Page: [Next] [New Search]