These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Ran C, Ding G, Liu W, Deng Y, Hou W. Langmuir; 2008 Sep 16; 24(18):9952-5. PubMed ID: 18702472 [Abstract] [Full Text] [Related]
4. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination. Cho WK, Kang SM, Kim DJ, Yang SH, Choi IS. Langmuir; 2006 Dec 19; 22(26):11208-13. PubMed ID: 17154605 [Abstract] [Full Text] [Related]
6. Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Hyde GK, Scarel G, Spagnola JC, Peng Q, Lee K, Gong B, Roberts KG, Roth KM, Hanson CA, Devine CK, Stewart SM, Hojo D, Na JS, Jur JS, Parsons GN. Langmuir; 2010 Feb 16; 26(4):2550-8. PubMed ID: 19799446 [Abstract] [Full Text] [Related]
7. Beyond Wenzel and Cassie-Baxter: second-order effects on the wetting of rough surfaces. Hejazi V, Moghadam AD, Rohatgi P, Nosonovsky M. Langmuir; 2014 Aug 12; 30(31):9423-9. PubMed ID: 25051526 [Abstract] [Full Text] [Related]
8. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method. Ensikat HJ, Mayser M, Barthlott W. Langmuir; 2012 Oct 09; 28(40):14338-46. PubMed ID: 22978578 [Abstract] [Full Text] [Related]
9. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes. Puente DW, Baur P. Pest Manag Sci; 2011 Jul 09; 67(7):798-806. PubMed ID: 21413140 [Abstract] [Full Text] [Related]
10. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition. Bormashenko E, Bormashenko Y, Stein T, Whyman G, Bormashenko E. J Colloid Interface Sci; 2007 Jul 01; 311(1):212-6. PubMed ID: 17359990 [Abstract] [Full Text] [Related]
11. The role of bio-inspired hierarchical structures in wetting. Grewal HS, Cho IJ, Yoon ES. Bioinspir Biomim; 2015 Apr 09; 10(2):026009. PubMed ID: 25856043 [Abstract] [Full Text] [Related]
12. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H, Schrader AM, Lee DW, Gallo A, Chen SY, Kaufman Y, Das S, Israelachvili JN. ACS Appl Mater Interfaces; 2016 Mar 09; 8(12):8168-74. PubMed ID: 26709928 [Abstract] [Full Text] [Related]
13. Control over wettability of polyethylene glycol surfaces using capillary lithography. Suh KY, Jon S. Langmuir; 2005 Jul 19; 21(15):6836-41. PubMed ID: 16008394 [Abstract] [Full Text] [Related]
14. Modeling of wetting: a study of nanowetting at rough and heterogeneous surfaces. Lundgren M, Allan NL, Cosgrove T. Langmuir; 2007 Jan 30; 23(3):1187-94. PubMed ID: 17241031 [Abstract] [Full Text] [Related]
15. Enhancing the effect of the nanofiber network structure on thermoresponsive wettability switching. Konosu Y, Matsumoto H, Tsuboi K, Minagawa M, Tanioka A. Langmuir; 2011 Dec 20; 27(24):14716-20. PubMed ID: 22098173 [Abstract] [Full Text] [Related]
16. Superhydrophobicity of natural and artificial surfaces under controlled condensation conditions. Yin L, Zhu L, Wang Q, Ding J, Chen Q. ACS Appl Mater Interfaces; 2011 Apr 20; 3(4):1254-60. PubMed ID: 21443252 [Abstract] [Full Text] [Related]
17. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading. Vásquez VZ, Ozcan M, Kimpara ET. Dent Mater; 2009 Feb 20; 25(2):221-31. PubMed ID: 18718654 [Abstract] [Full Text] [Related]
18. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM. Adv Colloid Interface Sci; 2004 Nov 29; 111(1-2):3-27. PubMed ID: 15571660 [Abstract] [Full Text] [Related]