These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 21255589

  • 1. Accuracy evaluation of RBC velocity measurement in nail-fold capillaries.
    Wu CC, Lin WC, Zhang G, Chang CW, Liu RS, Lin KP, Huang TC.
    Microvasc Res; 2011 May; 81(3):252-60. PubMed ID: 21255589
    [Abstract] [Full Text] [Related]

  • 2. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation.
    Wu CC, Zhang G, Huang TC, Lin KP.
    Microvasc Res; 2009 Dec; 78(3):319-24. PubMed ID: 19647002
    [Abstract] [Full Text] [Related]

  • 3. Hemodynamic analysis of capillary in finger nail-fold using computational fluid dynamics and image estimation.
    Shih TC, Zhang G, Wu CC, Hsiao HD, Wu TH, Lin KP, Huang TC.
    Microvasc Res; 2011 Jan; 81(1):68-72. PubMed ID: 21047523
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Fiber optical spatial filter anemometry--intravital measurement of red blood flow velocity (RBCV) in the microcirculation.
    Hungerer S, Nolte D, Elstner B, Pröhl M, Messmer K.
    Artif Cells Blood Substit Immobil Biotechnol; 2010 May; 38(3):119-28. PubMed ID: 20297922
    [Abstract] [Full Text] [Related]

  • 7. Measurement of RBC deformation and velocity in capillaries in vivo.
    Jeong JH, Sugii Y, Minamiyama M, Okamoto K.
    Microvasc Res; 2006 May; 71(3):212-7. PubMed ID: 16624342
    [Abstract] [Full Text] [Related]

  • 8. Pseudo three-dimensional vision-based nail-fold morphological and hemodynamic analysis.
    Lo LC, Lin KC, Hsu YN, Chen TP, Chiang JY, Chen YF, Liu YT.
    Comput Biol Med; 2012 Sep; 42(9):873-84. PubMed ID: 22819713
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Automated method for tracking individual red blood cells within capillaries to compute velocity and oxygen saturation.
    Japee SA, Pittman RN, Ellis CG.
    Microcirculation; 2005 Sep; 12(6):507-15. PubMed ID: 16147467
    [Abstract] [Full Text] [Related]

  • 13. Noninvasive imaging techniques in the assessment of scleroderma spectrum disorders.
    Murray AK, Moore TL, Manning JB, Taylor C, Griffiths CE, Herrick AL.
    Arthritis Rheum; 2009 Aug 15; 61(8):1103-11. PubMed ID: 19644893
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Measurement of RBC velocities in the rat pial arteries with an image-intensified high-speed video camera system.
    Ishikawa M, Sekizuka E, Shimizu K, Yamaguchi N, Kawase T.
    Microvasc Res; 1998 Nov 15; 56(3):166-72. PubMed ID: 9828154
    [Abstract] [Full Text] [Related]

  • 19. Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion.
    Bezemer R, Klijn E, Khalilzada M, Lima A, Heger M, van Bommel J, Ince C.
    Microvasc Res; 2010 Mar 15; 79(2):139-43. PubMed ID: 20079750
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.