These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 21255785

  • 1. Characterization and modeling of nonlinear hydrophobic interaction chromatographic systems.
    Nagrath D, Xia F, Cramer SM.
    J Chromatogr A; 2011 Mar 04; 1218(9):1219-26. PubMed ID: 21255785
    [Abstract] [Full Text] [Related]

  • 2. Modeling of adsorption in hydrophobic interaction chromatography systems using a preferential interaction quadratic isotherm.
    Xia F, Nagrath D, Cramer SM.
    J Chromatogr A; 2003 Mar 07; 989(1):47-54. PubMed ID: 12641281
    [Abstract] [Full Text] [Related]

  • 3. A novel thermodynamic state recursion method for description of nonideal nonlinear chromatographic process of frontal analysis.
    Liu Q, OuYang L, Liang H, Li N, Geng X.
    J Sep Sci; 2012 Jun 07; 35(12):1411-23. PubMed ID: 22740251
    [Abstract] [Full Text] [Related]

  • 4. Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode.
    To BC, Lenhoff AM.
    J Chromatogr A; 2011 Jan 21; 1218(3):427-40. PubMed ID: 21176838
    [Abstract] [Full Text] [Related]

  • 5. Hydrophobic interaction chromatography of proteins III. Transport and kinetic parameters in isocratic elution.
    To BC, Lenhoff AM.
    J Chromatogr A; 2008 Sep 26; 1205(1-2):46-59. PubMed ID: 18718599
    [Abstract] [Full Text] [Related]

  • 6. Modeling of protein monomer/aggregate purification and separation using hydrophobic interaction chromatography.
    McCue JT, Engel P, Ng A, Macniven R, Thömmes J.
    Bioprocess Biosyst Eng; 2008 Apr 26; 31(3):261-75. PubMed ID: 18205016
    [Abstract] [Full Text] [Related]

  • 7. Recombinant protein purification using gradient-assisted simulated moving bed hydrophobic interaction chromatography. Part I: selection of chromatographic system and estimation of adsorption isotherms.
    Palani S, Gueorguieva L, Rinas U, Seidel-Morgenstern A, Jayaraman G.
    J Chromatogr A; 2011 Sep 16; 1218(37):6396-401. PubMed ID: 21816402
    [Abstract] [Full Text] [Related]

  • 8. Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles.
    Persson P, Baybak O, Plieva F, Galaev IY, Mattiasson B, Nilsson B, Axelsson A.
    Biotechnol Bioeng; 2004 Oct 20; 88(2):224-36. PubMed ID: 15449292
    [Abstract] [Full Text] [Related]

  • 9. Protein interactions in hydrophobic charge induction chromatography (HCIC).
    Ghose S, Hubbard B, Cramer SM.
    Biotechnol Prog; 2005 Oct 20; 21(2):498-508. PubMed ID: 15801790
    [Abstract] [Full Text] [Related]

  • 10. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation.
    Zhang L, Lu D, Liu Z.
    J Chromatogr A; 2009 Mar 20; 1216(12):2483-90. PubMed ID: 19178912
    [Abstract] [Full Text] [Related]

  • 11. A parallel pore and surface diffusion model for predicting the adsorption and elution profiles of lispro insulin and two impurities in gradient-elution reversed phase chromatography.
    Chung PL, Bugayong JG, Chin CY, Wang NH.
    J Chromatogr A; 2010 Dec 24; 1217(52):8103-20. PubMed ID: 21074775
    [Abstract] [Full Text] [Related]

  • 12. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems.
    Chen J, Yang T, Cramer SM.
    J Chromatogr A; 2008 Jan 11; 1177(2):207-14. PubMed ID: 18048048
    [Abstract] [Full Text] [Related]

  • 13. Isotherm type shift of hydrophobic interaction adsorption and its effect on chromatographic behavior.
    Meng Q, Wang J, Ma G, Su Z.
    J Chromatogr Sci; 2013 Feb 11; 51(2):173-80. PubMed ID: 22815210
    [Abstract] [Full Text] [Related]

  • 14. Methods of calculating protein hydrophobicity and their application in developing correlations to predict hydrophobic interaction chromatography retention.
    Mahn A, Lienqueo ME, Salgado JC.
    J Chromatogr A; 2009 Mar 06; 1216(10):1838-44. PubMed ID: 19100553
    [Abstract] [Full Text] [Related]

  • 15. Classification of protein adsorption and recovery at low salt conditions in hydrophobic interaction chromatographic systems.
    Chen J, Luo Q, Breneman CM, Cramer SM.
    J Chromatogr A; 2007 Jan 19; 1139(2):236-46. PubMed ID: 17126350
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of selectivity changes in HIC systems using a preferential interaction based analysis.
    Xia F, Nagrath D, Garde S, Cramer SM.
    Biotechnol Bioeng; 2004 Aug 05; 87(3):354-63. PubMed ID: 15281110
    [Abstract] [Full Text] [Related]

  • 17. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.
    Nfor BK, Hylkema NN, Wiedhaup KR, Verhaert PD, van der Wielen LA, Ottens M.
    J Chromatogr A; 2011 Dec 09; 1218(49):8958-73. PubMed ID: 21868020
    [Abstract] [Full Text] [Related]

  • 18. Recombinant protein purification using gradient assisted simulated moving bed hydrophobic interaction chromatography. Part II: process design and experimental validation.
    Gueorguieva L, Palani S, Rinas U, Jayaraman G, Seidel-Morgenstern A.
    J Chromatogr A; 2011 Sep 16; 1218(37):6402-11. PubMed ID: 21824621
    [Abstract] [Full Text] [Related]

  • 19. Shrinking-core modeling of binary chromatographic breakthrough.
    Traylor SJ, Xu X, Lenhoff AM.
    J Chromatogr A; 2011 Apr 22; 1218(16):2222-31. PubMed ID: 21411102
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.