These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


417 related items for PubMed ID: 21262061

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Assessment of energy expenditure for physical activity using a triaxial accelerometer.
    Bouten CV, Westerterp KR, Verduin M, Janssen JD.
    Med Sci Sports Exerc; 1994 Dec; 26(12):1516-23. PubMed ID: 7869887
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Triaxial accelerometry for assessment of physical activity in young children.
    Tanaka C, Tanaka S, Kawahara J, Midorikawa T.
    Obesity (Silver Spring); 2007 May; 15(5):1233-41. PubMed ID: 17495200
    [Abstract] [Full Text] [Related]

  • 6. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H, Schutz Y, Ayabe M, Yoshioka M, Yoshitake Y, Shindo M, Ishii K, Tanaka H.
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Evaluation of low-intensity physical activity by triaxial accelerometry.
    Midorikawa T, Tanaka S, Kaneko K, Koizumi K, Ishikawa-Takata K, Futami J, Tabata I.
    Obesity (Silver Spring); 2007 Dec; 15(12):3031-8. PubMed ID: 18198312
    [Abstract] [Full Text] [Related]

  • 9. A new 2-regression model for the Actical accelerometer.
    Crouter SE, Bassett DR.
    Br J Sports Med; 2008 Mar; 42(3):217-24. PubMed ID: 17761786
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N, Browning RC, Sazonov E.
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [Abstract] [Full Text] [Related]

  • 12. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA, Staudenmayer JW, Freedson PS.
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [Abstract] [Full Text] [Related]

  • 13. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity.
    Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD.
    IEEE Trans Biomed Eng; 1997 Mar; 44(3):136-47. PubMed ID: 9216127
    [Abstract] [Full Text] [Related]

  • 14. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S, Rowlands AV, Murray P, Hurst TL.
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer.
    Bonomi AG, Plasqui G, Goris AH, Westerterp KR.
    J Appl Physiol (1985); 2009 Sep; 107(3):655-61. PubMed ID: 19556460
    [Abstract] [Full Text] [Related]

  • 19. A validation of a physical activity monitor for young and older adults.
    Nichols JF, Patterson P, Early T.
    Can J Sport Sci; 1992 Dec; 17(4):299-303. PubMed ID: 1330268
    [Abstract] [Full Text] [Related]

  • 20. Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices.
    Nakanishi M, Izumi S, Nagayoshi S, Kawaguchi H, Yoshimoto M, Shiga T, Ando T, Nakae S, Usui C, Aoyama T, Tanaka S.
    Biomed Eng Online; 2018 Jul 28; 17(1):100. PubMed ID: 30055617
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.