These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
90 related items for PubMed ID: 2126465
1. Engineering aspartate transcarbamylase. Hervé G, Xi XG, Ladjimi M, Van Vliet F, Cunin R. Biochimie; 1990 Aug; 72(8):609-16. PubMed ID: 2126465 [Abstract] [Full Text] [Related]
2. Intramolecular signal transmission in enterobacterial aspartate transcarbamylases II. Engineering co-operativity and allosteric regulation in the aspartate transcarbamylase of Erwinia herbicola. Cunin R, Rani CS, Van Vliet F, Wild JR, Wales M. J Mol Biol; 1999 Dec 17; 294(5):1401-11. PubMed ID: 10600394 [Abstract] [Full Text] [Related]
3. Intramolecular transmission of the ATP regulatory signal in Escherichia coli aspartate transcarbamylase: specific involvement of a clustered set of amino acid interactions at an interface between regulatory and catalytic subunits. De Staercke C, Van Vliet F, Xi XG, Rani CS, Ladjimi M, Jacobs A, Triniolles F, Hervé G, Cunin R. J Mol Biol; 1995 Feb 10; 246(1):132-43. PubMed ID: 7853393 [Abstract] [Full Text] [Related]
4. Heterotropic interactions in Escherichia coli aspartate transcarbamylase. Subunit interfaces involved in CTP inhibition and ATP activation. Xi XG, van Vliet F, Ladjimi MM, de Wannemaeker B, de Staercke C, Glansdorff N, Piérard A, Cunin R, Hervé G. J Mol Biol; 1991 Aug 05; 220(3):789-99. PubMed ID: 1870132 [Abstract] [Full Text] [Related]
5. Heterotropic interactions in aspartate transcarbamoylase: turning allosteric ATP activation into inhibition as a consequence of a single tyrosine to phenylalanine mutation. Van Vliet F, Xi XG, De Staercke C, de Wannemaeker B, Jacobs A, Cherfils J, Ladjimi MM, Hervé G, Cunin R. Proc Natl Acad Sci U S A; 1991 Oct 15; 88(20):9180-3. PubMed ID: 1924381 [Abstract] [Full Text] [Related]
6. Modelling allosteric processes in E coli aspartate transcarbamylase. Cherfils J, Vachette P, Janin J. Biochimie; 1990 Aug 15; 72(8):617-24. PubMed ID: 2126466 [Abstract] [Full Text] [Related]
7. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits. Eisenstein E, Han MS, Woo TS, Ritchey JM, Gibbons I, Yang YR, Schachman HK. J Biol Chem; 1992 Nov 05; 267(31):22148-55. PubMed ID: 1429567 [Abstract] [Full Text] [Related]
8. Co-operative interactions between the catalytic sites in Escherichia coli aspartate transcarbamylase. Role of the C-terminal region of the regulatory chains. Xi XG, Van Vliet F, Ladjimi MM, De Wannemaeker B, De Staercke C, Piérard A, Glansdorff N, Hervé G, Cunin R. J Mol Biol; 1990 Nov 20; 216(2):375-84. PubMed ID: 2254935 [Abstract] [Full Text] [Related]
9. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME, Madison LL, Glaser SS, Wild JR. J Mol Biol; 1999 Dec 17; 294(5):1387-400. PubMed ID: 10600393 [Abstract] [Full Text] [Related]
11. Propagation of allosteric changes through the catalytic-regulatory interface of Escherichia coli aspartate transcarbamylase. Xu W, Pitts MA, Middleton SA, Kelleher KS, Kantrowitz ER. Biochemistry; 1988 Jul 26; 27(15):5507-15. PubMed ID: 3052579 [Abstract] [Full Text] [Related]
12. Analysis of two purified mutants of Escherichia coli aspartate transcarbamylase with single amino acid substitutions. Silver RS, Daigneault JP, Teague PD, Kantrowitz ER. J Mol Biol; 1983 Aug 25; 168(4):729-45. PubMed ID: 6350607 [Abstract] [Full Text] [Related]
13. The activation of Escherichia coli aspartate transcarbamylase by ATP. Specific involvement of helix H2' at the hydrophobic interface between the two domains of the regulatory chains. Xi XG, De Staercke C, Van Vliet F, Triniolles F, Jacobs A, Stas PP, Ladjimi MM, Simon V, Cunin R, Hervé G. J Mol Biol; 1994 Sep 16; 242(2):139-49. PubMed ID: 8089837 [Abstract] [Full Text] [Related]
14. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase. Middleton SA, Stebbins JW, Kantrowitz ER. Biochemistry; 1989 Feb 21; 28(4):1617-26. PubMed ID: 2655696 [Abstract] [Full Text] [Related]
16. Escherichia coli aspartate transcarbamylase: the relation between structure and function. Kantrowitz ER, Lipscomb WN. Science; 1988 Aug 05; 241(4866):669-74. PubMed ID: 3041592 [Abstract] [Full Text] [Related]
17. The tryptophan residues of aspartate transcarbamylase: site-directed mutagenesis and time-resolved fluorescence spectroscopy. Fetler L, Tauc P, Hervé G, Ladjimi MM, Brochon JC. Biochemistry; 1992 Dec 15; 31(49):12504-13. PubMed ID: 1463737 [Abstract] [Full Text] [Related]
18. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain. Newton CJ, Kantrowitz ER. Proc Natl Acad Sci U S A; 1990 Mar 15; 87(6):2309-13. PubMed ID: 2179954 [Abstract] [Full Text] [Related]
19. Function of arginine-234 and aspartic acid-271 in domain closure, cooperativity, and catalysis in Escherichia coli aspartate transcarbamylase. Middleton SA, Kantrowitz ER. Biochemistry; 1988 Nov 15; 27(23):8653-60. PubMed ID: 3146350 [Abstract] [Full Text] [Related]