These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


288 related items for PubMed ID: 21271682

  • 21. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand.
    Pan Y, Pan CL, Zhang Y, Li H, Min S, Guo X, Zheng B, Chen H, Anders A, Lai Z, Zheng J, Huang KW.
    Chem Asian J; 2016 May 06; 11(9):1357-60. PubMed ID: 27101381
    [Abstract] [Full Text] [Related]

  • 22. pH-Dependent catalytic activity and chemoselectivity in transfer hydrogenation catalyzed by iridium complex with 4,4'-dihydroxy-2,2'-bipyridine.
    Himeda Y, Onozawa-Komatsuzaki N, Miyazawa S, Sugihara H, Hirose T, Kasuga K.
    Chemistry; 2008 May 06; 14(35):11076-81. PubMed ID: 18989857
    [Abstract] [Full Text] [Related]

  • 23. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L, Onishi N, Murata K, Hirose T, Muckerman JT, Fujita E, Himeda Y.
    ChemSusChem; 2017 Mar 22; 10(6):1071-1075. PubMed ID: 27860395
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO2 Hydrogenation.
    Suna Y, Himeda Y, Fujita E, Muckerman JT, Ertem MZ.
    ChemSusChem; 2017 Nov 23; 10(22):4535-4543. PubMed ID: 28985455
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Hydrogen generation at ambient conditions: application in fuel cells.
    Boddien A, Loges B, Junge H, Beller M.
    ChemSusChem; 2008 Nov 23; 1(8-9):751-8. PubMed ID: 18686291
    [Abstract] [Full Text] [Related]

  • 32. Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts.
    Wang Y, Agarwal S, Kloekhorst A, Heeres HJ.
    ChemSusChem; 2016 May 10; 9(9):951-61. PubMed ID: 26836970
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Ru(II) -mediated hydrogen transfer from aqueous glycerol to CO2: from waste to value-added products.
    Dibenedetto A, Stufano P, Nocito F, Aresta M.
    ChemSusChem; 2011 Sep 19; 4(9):1311-5. PubMed ID: 21656696
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water.
    Garron A, Epron F.
    Water Res; 2005 Aug 19; 39(13):3073-81. PubMed ID: 15982701
    [Abstract] [Full Text] [Related]

  • 40. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts.
    Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo QX.
    ChemSusChem; 2010 Oct 25; 3(10):1172-5. PubMed ID: 20872402
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.