These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


382 related items for PubMed ID: 21275340

  • 1. Metabolic rate depression: the biochemistry of mammalian hibernation.
    Storey KB, Storey JM.
    Adv Clin Chem; 2010; 52():77-108. PubMed ID: 21275340
    [Abstract] [Full Text] [Related]

  • 2. Mammalian hibernation: differential gene expression and novel application of epigenetic controls.
    Morin P, Storey KB.
    Int J Dev Biol; 2009; 53(2-3):433-42. PubMed ID: 19412897
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The role of energy availability in Mammalian hibernation: a cost-benefit approach.
    Humphries MM, Thomas DW, Kramer DL.
    Physiol Biochem Zool; 2003; 76(2):165-79. PubMed ID: 12794670
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Metabolic rate and body temperature reduction during hibernation and daily torpor.
    Geiser F.
    Annu Rev Physiol; 2004; 66():239-74. PubMed ID: 14977403
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses?
    Van Breukelen F, Martin SL.
    J Appl Physiol (1985); 2002 Jun; 92(6):2640-7. PubMed ID: 12015384
    [Abstract] [Full Text] [Related]

  • 13. Group hibernation does not reduce energetic costs of young yellow-bellied marmots.
    Armitage KB, Woods BC.
    Physiol Biochem Zool; 2003 Jun; 76(6):888-98. PubMed ID: 14988804
    [Abstract] [Full Text] [Related]

  • 14. The role of energy availability in Mammalian hibernation: an experimental test in free-ranging eastern chipmunks.
    Humphries MM, Kramer DL, Thomas DW.
    Physiol Biochem Zool; 2003 Jun; 76(2):180-6. PubMed ID: 12794671
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Hibernation and daily torpor in an armadillo, the pichi (Zaedyus pichiy).
    Superina M, Boily P.
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Dec; 148(4):893-8. PubMed ID: 17919955
    [Abstract] [Full Text] [Related]

  • 17. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance.
    Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB.
    J Neurochem; 2007 Sep; 102(6):1713-1726. PubMed ID: 17555547
    [Abstract] [Full Text] [Related]

  • 18. Changes in the mitochondrial phosphoproteome during mammalian hibernation.
    Chung DJ, Szyszka B, Brown JC, Hüner NP, Staples JF.
    Physiol Genomics; 2013 May 15; 45(10):389-99. PubMed ID: 23572536
    [Abstract] [Full Text] [Related]

  • 19. Advances in molecular biology of hibernation in mammals.
    Andrews MT.
    Bioessays; 2007 May 15; 29(5):431-40. PubMed ID: 17450592
    [Abstract] [Full Text] [Related]

  • 20. Molecular interactions underpinning the phenotype of hibernation in mammals.
    Andrews MT.
    J Exp Biol; 2019 Jan 25; 222(Pt 2):. PubMed ID: 30683731
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.