These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
586 related items for PubMed ID: 2128195
41. Cromakalim- and RP 49356-induced 42K+ and 86Rb+ efflux in rat myometrium. Piper IT, Hollingsworth M. Eur J Pharmacol; 1995 Sep 05; 283(1-3):1-8. PubMed ID: 7498297 [Abstract] [Full Text] [Related]
42. Differential inhibition by tedisamil (KC 8857) and glibenclamide of the responses to cromakalim and minoxidil sulphate in rat isolated aorta. Bray K, Quast U. Naunyn Schmiedebergs Arch Pharmacol; 1992 Feb 05; 345(2):244-50. PubMed ID: 1570027 [Abstract] [Full Text] [Related]
43. Involvement of K+ channels in the relaxant responses to various agonists in estrogen primed rat uterus. Mehta AA, Dave KC, Goyal RK. Indian J Physiol Pharmacol; 1995 Apr 05; 39(2):140-4. PubMed ID: 7649602 [Abstract] [Full Text] [Related]
44. Lack of effect of potassium channel openers on ATP-modulated potassium channels recorded from rat ventromedial hypothalamic neurones. Sellers AJ, Boden PR, Ashford ML. Br J Pharmacol; 1992 Dec 05; 107(4):1068-74. PubMed ID: 1467829 [Abstract] [Full Text] [Related]
45. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide. Quast U, Cook NS. J Pharmacol Exp Ther; 1989 Jul 05; 250(1):261-71. PubMed ID: 2501478 [Abstract] [Full Text] [Related]
46. Differential effects of diazoxide, cromakalim and pinacidil on adrenergic neurotransmission and 86Rb+ efflux in rat brain cortical slices. Takata Y, Shimada F, Kato H. J Pharmacol Exp Ther; 1992 Dec 05; 263(3):1293-301. PubMed ID: 1469635 [Abstract] [Full Text] [Related]
47. Effect of cromakalim and glibenclamide on spontaneous and evoked motility of the guinea-pig isolated renal pelvis and ureter. Maggi CA, Giuliani S, Santicioli P. Br J Pharmacol; 1994 Mar 05; 111(3):687-94. PubMed ID: 8019747 [Abstract] [Full Text] [Related]
48. Cross tolerance between cromakalim and RP49356 in the uterus of the rat in vivo and in vitro. Piper I, Downing SJ, Hollingsworth M. Eur J Pharmacol; 1992 Sep 04; 219(3):347-53. PubMed ID: 1425963 [Abstract] [Full Text] [Related]
49. Modulation of rabbit aortic Ca(2+)-activated K+ channels by pinacidil, cromakalim, and glibenclamide. Gelband GH, McCullough JR. Am J Physiol; 1993 May 04; 264(5 Pt 1):C1119-27. PubMed ID: 8498475 [Abstract] [Full Text] [Related]
50. [The vasospasmolytic effects of nicorandil, cromakalim and pinacidil on 3,4-diaminopyridine-induced phasic contractions in canine coronary arteries as an experimental vasospasm model]. Kamijo T, Tomaru T, Miwa A, Nakamura F, Kido H, Sugimoto T, Uchida Y. Nihon Yakurigaku Zasshi; 1992 Oct 04; 100(4):317-27. PubMed ID: 1446882 [Abstract] [Full Text] [Related]
51. Comparison of the effects of the K(+)-channel openers cromakalim and minoxidil sulphate on vascular smooth muscle. Wickenden AD, Grimwood S, Grant TL, Todd MH. Br J Pharmacol; 1991 May 04; 103(1):1148-52. PubMed ID: 1878752 [Abstract] [Full Text] [Related]
52. RP 49356 and cromakalim relax airway smooth muscle in vitro by opening a sulphonylurea-sensitive K+ channel: a comparison with nifedipine. Raeburn D, Brown TJ. J Pharmacol Exp Ther; 1991 Feb 04; 256(2):480-5. PubMed ID: 1899701 [Abstract] [Full Text] [Related]
53. Effects of the K+ channel activators, RP 52891, cromakalim and diazoxide, on the plasma insulin level, plasma renin activity and blood pressure in rats. Pratz J, Mondot S, Montier F, Cavero I. J Pharmacol Exp Ther; 1991 Jul 01; 258(1):216-22. PubMed ID: 1906538 [Abstract] [Full Text] [Related]
54. The effect of potassium channel opener pinacidil on the non-pregnant rat uterus. Novakovic R, Milovanovic S, Protic D, Djokic J, Heinle H, Gojkovic-Bukarica L. Basic Clin Pharmacol Toxicol; 2007 Sep 01; 101(3):181-6. PubMed ID: 17697038 [Abstract] [Full Text] [Related]
55. Cromakalim, pinacidil and RP 49356 activate a tolbutamide-sensitive K+ conductance in human skeletal muscle fibres. Quasthoff S, Spuler A, Lehmann-Horn F, Grafe P. Pflugers Arch; 1989 Sep 01; 414 Suppl 1():S179-80. PubMed ID: 2780252 [No Abstract] [Full Text] [Related]
56. Relaxant effects of the potassium channel activators BRL 38227 and pinacidil on guinea-pig and human airway smooth muscle, and blockade of their effects by glibenclamide and BRL 31660. Buckle DR, Arch JR, Bowring NE, Foster KA, Taylor JF, Taylor SG, Shaw DJ. Pulm Pharmacol; 1993 Mar 01; 6(1):77-86. PubMed ID: 8477155 [Abstract] [Full Text] [Related]
57. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries. Nielsen-Kudsk JE. Dan Med Bull; 1996 Dec 01; 43(5):429-47. PubMed ID: 8960816 [Abstract] [Full Text] [Related]
58. Differential effects of pinacidil and levcromakalim on the contractions elicited electrically or by noradrenaline in the portal vein of the rabbit. Gojković-Bukarica L, Kazić T. Fundam Clin Pharmacol; 1999 Dec 01; 13(5):527-34. PubMed ID: 10520724 [Abstract] [Full Text] [Related]
59. The potassium channel openers: a new class of vasorelaxants. Weston AH, Longmore J, Newgreen DT, Edwards G, Bray KM, Duty S. Blood Vessels; 1990 Dec 01; 27(2-5):306-13. PubMed ID: 1700735 [Abstract] [Full Text] [Related]
60. KATP-channel-induced vasodilation is modulated by the Na,K-pump activity in rabbit coronary small arteries. Glavind-Kristensen M, Matchkov V, Hansen VB, Forman A, Nilsson H, Aalkjaer C. Br J Pharmacol; 2004 Dec 01; 143(7):872-80. PubMed ID: 15504751 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]