These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 21284862
1. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae. Zúñiga M, Gómez-Escoín CL, González-Candelas F. BMC Evol Biol; 2011 Feb 01; 11():34. PubMed ID: 21284862 [Abstract] [Full Text] [Related]
2. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria. Monedero V, Revilla-Guarinos A, Zúñiga M. Adv Appl Microbiol; 2017 Feb 01; 99():1-51. PubMed ID: 28438266 [Abstract] [Full Text] [Related]
3. Evolution of orphan and atypical histidine kinases and response regulators for microbial signaling diversity. Xu G, Yang S. Int J Biol Macromol; 2024 Aug 01; 275(Pt 1):133635. PubMed ID: 38964677 [Abstract] [Full Text] [Related]
4. Crosstalk and the evolution of specificity in two-component signaling. Rowland MA, Deeds EJ. Proc Natl Acad Sci U S A; 2014 Apr 15; 111(15):5550-5. PubMed ID: 24706803 [Abstract] [Full Text] [Related]
5. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems. Galperin MY, Makarova KS, Wolf YI, Koonin EV. J Bacteriol; 2018 Apr 01; 200(7):. PubMed ID: 29263101 [Abstract] [Full Text] [Related]
6. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. Int J Syst Evol Microbiol; 2020 Apr 01; 70(4):2782-2858. PubMed ID: 32293557 [Abstract] [Full Text] [Related]
7. Unique niche-specific adaptation of fructophilic lactic acid bacteria and proposal of three Apilactobacillus species as novel members of the group. Maeno S, Nishimura H, Tanizawa Y, Dicks L, Arita M, Endo A. BMC Microbiol; 2021 Feb 09; 21(1):41. PubMed ID: 33563209 [Abstract] [Full Text] [Related]
8. Bacterial histidine kinase as signal sensor and transducer. Khorchid A, Ikura M. Int J Biochem Cell Biol; 2006 Mar 09; 38(3):307-12. PubMed ID: 16242988 [Abstract] [Full Text] [Related]
9. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae. Lavín JL, Kiil K, Resano O, Ussery DW, Oguiza JA. BMC Genomics; 2007 Oct 31; 8():397. PubMed ID: 17971244 [Abstract] [Full Text] [Related]
10. Building interacting partner predictors using co-varying residue pairs between histidine kinase and response regulator pairs of 48 bacterial two-component systems. Choi K, Kim S. Proteins; 2011 Apr 31; 79(4):1118-31. PubMed ID: 21246634 [Abstract] [Full Text] [Related]
11. P2CS: updates of the prokaryotic two-component systems database. Ortet P, Whitworth DE, Santaella C, Achouak W, Barakat M. Nucleic Acids Res; 2015 Jan 31; 43(Database issue):D536-41. PubMed ID: 25324303 [Abstract] [Full Text] [Related]
12. Two-component systems of the myxobacteria: structure, diversity and evolutionary relationships. Whitworth DE, Cock PJA. Microbiology (Reading); 2008 Feb 31; 154(Pt 2):360-372. PubMed ID: 18227240 [Abstract] [Full Text] [Related]
13. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP. BMC Genomics; 2012 Apr 04; 13():128. PubMed ID: 22475007 [Abstract] [Full Text] [Related]
14. Genomic analysis of the histidine kinase family in bacteria and archaea. Kim DJ, Forst S. Microbiology (Reading); 2001 May 04; 147(Pt 5):1197-1212. PubMed ID: 11320123 [Abstract] [Full Text] [Related]
15. Evolution of two-component signal transduction. Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR. Mol Biol Evol; 2000 Dec 04; 17(12):1956-70. PubMed ID: 11110912 [Abstract] [Full Text] [Related]
16. Evolution of prokaryotic two-component systems: insights from comparative genomics. Whitworth DE, Cock PJ. Amino Acids; 2009 Sep 04; 37(3):459-66. PubMed ID: 19241119 [Abstract] [Full Text] [Related]
17. Two-component signal transduction systems of Desulfovibrio vulgaris: structural and phylogenetic analysis and deduction of putative cognate pairs. Zhang W, Culley DE, Wu G, Brockman FJ. J Mol Evol; 2006 Apr 04; 62(4):473-87. PubMed ID: 16547644 [Abstract] [Full Text] [Related]
18. Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Salvetti E, Fondi M, Fani R, Torriani S, Felis GE. Syst Appl Microbiol; 2013 Jul 04; 36(5):291-305. PubMed ID: 23735786 [Abstract] [Full Text] [Related]
19. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. Malik A, Radji M, Kralj S, Dijkhuizen L. FEMS Microbiol Lett; 2009 Nov 04; 300(1):131-8. PubMed ID: 19758326 [Abstract] [Full Text] [Related]
20. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Lange R, Wagner C, de Saizieu A, Flint N, Molnos J, Stieger M, Caspers P, Kamber M, Keck W, Amrein KE. Gene; 1999 Sep 03; 237(1):223-34. PubMed ID: 10524254 [Abstract] [Full Text] [Related] Page: [Next] [New Search]