These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


667 related items for PubMed ID: 21288523

  • 21. Development and experimental validation of a three-dimensional finite element model of the human scapula.
    Gupta S, van der Helm FC, Sterk JC, van Keulen F, Kaptein BL.
    Proc Inst Mech Eng H; 2004; 218(2):127-42. PubMed ID: 15116900
    [Abstract] [Full Text] [Related]

  • 22. Parameter study for the finite element modelling of long bones with computed-tomography-imaging-based stiffness distribution.
    Wullschleger L, Weisse B, Blaser D, Fürst AE.
    Proc Inst Mech Eng H; 2010; 224(9):1095-107. PubMed ID: 21053774
    [Abstract] [Full Text] [Related]

  • 23. Repeatability of digital image correlation for measurement of surface strains in composite long bones.
    Väänänen SP, Amin Yavari S, Weinans H, Zadpoor AA, Jurvelin JS, Isaksson H.
    J Biomech; 2013 Jul 26; 46(11):1928-32. PubMed ID: 23791085
    [Abstract] [Full Text] [Related]

  • 24. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J, Ito K, van Rietbergen B.
    Biomech Model Mechanobiol; 2015 Jan 26; 14(1):39-48. PubMed ID: 24777672
    [Abstract] [Full Text] [Related]

  • 25. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F, Martelli S, Reggiani B, Cristofolini L, Viceconti M.
    IEEE Trans Biomed Eng; 2006 Nov 26; 53(11):2194-200. PubMed ID: 17073324
    [Abstract] [Full Text] [Related]

  • 26. Prediction of the mechanical response of canine humerus to three-point bending using subject-specific finite element modelling.
    Laurent CP, Böhme B, Mengoni M, d'Otreppe V, Balligand M, Ponthot JP.
    Proc Inst Mech Eng H; 2016 Jul 26; 230(7):639-49. PubMed ID: 27129383
    [Abstract] [Full Text] [Related]

  • 27. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method.
    Matsumoto T, Ohnishi I, Bessho M, Imai K, Ohashi S, Nakamura K.
    Spine (Phila Pa 1976); 2009 Jun 15; 34(14):1464-9. PubMed ID: 19525837
    [Abstract] [Full Text] [Related]

  • 28. Analysis of bone demineralization due to the use of exoprosthesis by comparing Young's modulus of the femur in unilateral transfemoral amputees.
    Ramírez JF, Isaza JA, Mariaka I, Vélez JA.
    Prosthet Orthot Int; 2011 Dec 15; 35(4):459-66. PubMed ID: 22005351
    [Abstract] [Full Text] [Related]

  • 29. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method.
    Macneil JA, Boyd SK.
    Bone; 2008 Jun 15; 42(6):1203-13. PubMed ID: 18358799
    [Abstract] [Full Text] [Related]

  • 30. Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
    Gardner MP, Chong AC, Pollock AG, Wooley PH.
    Ann Biomed Eng; 2010 Mar 15; 38(3):613-20. PubMed ID: 20049637
    [Abstract] [Full Text] [Related]

  • 31. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men.
    Vilayphiou N, Boutroy S, Szulc P, van Rietbergen B, Munoz F, Delmas PD, Chapurlat R.
    J Bone Miner Res; 2011 May 15; 26(5):965-73. PubMed ID: 21541999
    [Abstract] [Full Text] [Related]

  • 32. Experimental validation of a finite element model of a composite tibia.
    Gray HA, Zavatsky AB, Taddei F, Cristofolini L, Gill HS.
    Proc Inst Mech Eng H; 2007 Apr 15; 221(3):315-24. PubMed ID: 17539586
    [Abstract] [Full Text] [Related]

  • 33. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z, Padan R, Joskowicz L, Milgrom C.
    J Biomech Eng; 2007 Jun 15; 129(3):297-309. PubMed ID: 17536896
    [Abstract] [Full Text] [Related]

  • 34. Quantitative computed tomography-based predictions of vertebral strength in anterior bending.
    Buckley JM, Cheng L, Loo K, Slyfield C, Xu Z.
    Spine (Phila Pa 1976); 2007 Apr 20; 32(9):1019-27. PubMed ID: 17450078
    [Abstract] [Full Text] [Related]

  • 35. The role of cross-sectional geometry, curvature, and limb posture in maintaining equal safety factors: a computed tomography study.
    Brassey CA, Kitchener AC, Withers PJ, Manning PL, Sellers WI.
    Anat Rec (Hoboken); 2013 Mar 20; 296(3):395-413. PubMed ID: 23382038
    [Abstract] [Full Text] [Related]

  • 36. Mechanical properties of long bones in dogs.
    Markel MD, Sielman E, Rapoff AJ, Kohles SS.
    Am J Vet Res; 1994 Aug 20; 55(8):1178-83. PubMed ID: 7978660
    [Abstract] [Full Text] [Related]

  • 37. Validation of subject-specific automated p-FE analysis of the proximal femur.
    Trabelsi N, Yosibash Z, Milgrom C.
    J Biomech; 2009 Feb 09; 42(3):234-41. PubMed ID: 19118831
    [Abstract] [Full Text] [Related]

  • 38. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia.
    Jämsä T, Jalovaara P, Peng Z, Väänänen HK, Tuukkanen J.
    Bone; 1998 Aug 09; 23(2):155-61. PubMed ID: 9701475
    [Abstract] [Full Text] [Related]

  • 39. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC, van der Meulen MC.
    J Biomech; 2004 May 09; 37(5):613-21. PubMed ID: 15046990
    [Abstract] [Full Text] [Related]

  • 40. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z, Wan C, Gao X, Ji T.
    J Biomech Eng; 2011 Oct 09; 133(10):101006. PubMed ID: 22070331
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 34.