These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 21288567

  • 1. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding.
    Melchels FP, Tonnarelli B, Olivares AL, Martin I, Lacroix D, Feijen J, Wendt DJ, Grijpma DW.
    Biomaterials; 2011 Apr; 32(11):2878-84. PubMed ID: 21288567
    [Abstract] [Full Text] [Related]

  • 2. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.
    Melchels FP, Barradas AM, van Blitterswijk CA, de Boer J, Feijen J, Grijpma DW.
    Acta Biomater; 2010 Nov; 6(11):4208-17. PubMed ID: 20561602
    [Abstract] [Full Text] [Related]

  • 3. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency.
    Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL.
    Acta Biomater; 2011 Mar; 7(3):1009-18. PubMed ID: 21056125
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.
    Smits AI, Driessen-Mol A, Bouten CV, Baaijens FP.
    Tissue Eng Part C Methods; 2012 Jun; 18(6):475-85. PubMed ID: 22224590
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Flow perfusion improves seeding of tissue engineering scaffolds with different architectures.
    Alvarez-Barreto JF, Linehan SM, Shambaugh RL, Sikavitsas VI.
    Ann Biomed Eng; 2007 Mar; 35(3):429-42. PubMed ID: 17216348
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition.
    Miot S, Woodfield T, Daniels AU, Suetterlin R, Peterschmitt I, Heberer M, van Blitterswijk CA, Riesle J, Martin I.
    Biomaterials; 2005 May; 26(15):2479-89. PubMed ID: 15585250
    [Abstract] [Full Text] [Related]

  • 12. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering.
    El-Ayoubi R, DeGrandpré C, DiRaddo R, Yousefi AM, Lavigne P.
    J Biomater Appl; 2011 Jan; 25(5):429-44. PubMed ID: 20042429
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts.
    Nuernberger S, Cyran N, Albrecht C, Redl H, Vécsei V, Marlovits S.
    Biomaterials; 2011 Feb; 32(4):1032-40. PubMed ID: 21074264
    [Abstract] [Full Text] [Related]

  • 16. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
    Zhao F, Vaughan TJ, McNamara LM.
    Biomech Model Mechanobiol; 2016 Jun; 15(3):561-77. PubMed ID: 26224148
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Enhancing annulus fibrosus tissue formation in porous silk scaffolds.
    Chang G, Kim HJ, Vunjak-Novakovic G, Kaplan DL, Kandel R.
    J Biomed Mater Res A; 2010 Jan; 92(1):43-51. PubMed ID: 19165797
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.