These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


607 related items for PubMed ID: 21289391

  • 1. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N, Xu L, Wang HQ, Zheng JC.
    Nanotechnology; 2011 Mar 11; 22(10):105705. PubMed ID: 21289391
    [Abstract] [Full Text] [Related]

  • 2. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation.
    Zhang C, Hao XL, Wang CX, Wei N, Rabczuk T.
    Sci Rep; 2017 Jan 25; 7():41398. PubMed ID: 28120921
    [Abstract] [Full Text] [Related]

  • 3. Thermal transport in hexagonal boron nitride nanoribbons.
    Ouyang T, Chen Y, Xie Y, Yang K, Bao Z, Zhong J.
    Nanotechnology; 2010 Jun 18; 21(24):245701. PubMed ID: 20484794
    [Abstract] [Full Text] [Related]

  • 4. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X, Zhang G, Li B.
    J Phys Condens Matter; 2011 Jun 01; 23(21):215301. PubMed ID: 21555836
    [Abstract] [Full Text] [Related]

  • 5. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ, Liu Z, Ng TY.
    Nanotechnology; 2012 Sep 28; 23(38):385702. PubMed ID: 22947664
    [Abstract] [Full Text] [Related]

  • 6. Dimensional crossover of thermal conductance in graphene nanoribbons: a first-principles approach.
    Wang J, Wang XM, Chen YF, Wang JS.
    J Phys Condens Matter; 2012 Jul 25; 24(29):295403. PubMed ID: 22739359
    [Abstract] [Full Text] [Related]

  • 7. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS, Loh KP, Gan CK.
    Nanotechnology; 2012 Dec 14; 23(49):495702. PubMed ID: 23149343
    [Abstract] [Full Text] [Related]

  • 8. Spontaneous curling of graphene sheets with reconstructed edges.
    Shenoy VB, Reddy CD, Zhang YW.
    ACS Nano; 2010 Aug 24; 4(8):4840-4. PubMed ID: 20731459
    [Abstract] [Full Text] [Related]

  • 9. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX, Chen KQ, Duan W.
    J Phys Condens Matter; 2011 Aug 10; 23(31):315302. PubMed ID: 21772066
    [Abstract] [Full Text] [Related]

  • 10. Local strain effect on the thermal transport of graphene nanoribbons: a molecular dynamics investigation.
    Xu L, Zhang X, Zheng Y.
    Phys Chem Chem Phys; 2015 May 14; 17(18):12031-40. PubMed ID: 25872737
    [Abstract] [Full Text] [Related]

  • 11. Thermal Transport Engineering in Graphdiyne and Graphdiyne Nanoribbons.
    Wan Y, Xiong S, Ouyang B, Niu Z, Ni Y, Zhao Y, Zhang X.
    ACS Omega; 2019 Feb 28; 4(2):4147-4152. PubMed ID: 31459623
    [Abstract] [Full Text] [Related]

  • 12. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Cağın T.
    ACS Nano; 2011 May 24; 5(5):3779-87. PubMed ID: 21452884
    [Abstract] [Full Text] [Related]

  • 13. Knitted graphene-nanoribbon sheet: a mechanically robust structure.
    Wei N, Fan Z, Xu LQ, Zheng YP, Wang HQ, Zheng JC.
    Nanoscale; 2012 Feb 07; 4(3):785-91. PubMed ID: 22170502
    [Abstract] [Full Text] [Related]

  • 14. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties.
    K V S D, Kannam SK, Sathian SP.
    Nanotechnology; 2020 Aug 21; 31(34):345703. PubMed ID: 32369790
    [Abstract] [Full Text] [Related]

  • 15. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L, Li Q, Ren H, Su H, Shi QW, Yang J.
    J Chem Phys; 2008 Aug 21; 129(7):074704. PubMed ID: 19044789
    [Abstract] [Full Text] [Related]

  • 16. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S, Li L, Guy OJ, Zhang Y.
    Phys Chem Chem Phys; 2019 Aug 21; 21(33):18161-18169. PubMed ID: 31389445
    [Abstract] [Full Text] [Related]

  • 17. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
    Hong Y, Zhang J, Huang X, Zeng XC.
    Nanoscale; 2015 Nov 28; 7(44):18716-24. PubMed ID: 26502794
    [Abstract] [Full Text] [Related]

  • 18. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X, Tang F, Copple A.
    J Phys Condens Matter; 2012 Feb 22; 24(7):075501. PubMed ID: 22297686
    [Abstract] [Full Text] [Related]

  • 19. Thermal and thermoelectric properties of graphene.
    Xu Y, Li Z, Duan W.
    Small; 2014 Jun 12; 10(11):2182-99. PubMed ID: 24610791
    [Abstract] [Full Text] [Related]

  • 20. Prediction of very large values of magnetoresistance in a graphene nanoribbon device.
    Kim WY, Kim KS.
    Nat Nanotechnol; 2008 Jul 12; 3(7):408-12. PubMed ID: 18654564
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.