These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 21294566
1. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide. Wu L, Beard BL, Roden EE, Johnson CM. Environ Sci Technol; 2011 Mar 01; 45(5):1847-52. PubMed ID: 21294566 [Abstract] [Full Text] [Related]
2. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Percak-Dennett EM, Beard BL, Xu H, Konishi H, Johnson CM, Roden EE. Geobiology; 2011 May 01; 9(3):205-20. PubMed ID: 21504536 [Abstract] [Full Text] [Related]
3. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid. Jang JH, Dempsey BA, Burgos WD. Water Res; 2008 Apr 01; 42(8-9):2269-77. PubMed ID: 18191438 [Abstract] [Full Text] [Related]
4. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Tangalos GE, Beard BL, Johnson CM, Alpers CN, Shelobolina ES, Xu H, Konishi H, Roden EE. Geobiology; 2010 Jun 01; 8(3):197-208. PubMed ID: 20374296 [Abstract] [Full Text] [Related]
5. Iron isotope characteristics of Hot Springs at Chocolate Pots, Yellowstone National Park. Wu L, Brucker RP, Beard BL, Roden EE, Johnson CM. Astrobiology; 2013 Nov 01; 13(11):1091-101. PubMed ID: 24219169 [Abstract] [Full Text] [Related]
6. Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism. Tai YL, Dempsey BA. Water Res; 2009 Feb 01; 43(2):546-52. PubMed ID: 19081595 [Abstract] [Full Text] [Related]
7. Iron Isotope Fractionations Reveal a Finite Bioavailable Fe Pool for Structural Fe(III) Reduction in Nontronite. Shi B, Liu K, Wu L, Li W, Smeaton CM, Beard BL, Johnson CM, Roden EE, Van Cappellen P. Environ Sci Technol; 2016 Aug 16; 50(16):8661-9. PubMed ID: 27291525 [Abstract] [Full Text] [Related]
8. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002. Swanner ED, Bayer T, Wu W, Hao L, Obst M, Sundman A, Byrne JM, Michel FM, Kleinhanns IC, Kappler A, Schoenberg R. Environ Sci Technol; 2017 May 02; 51(9):4897-4906. PubMed ID: 28402123 [Abstract] [Full Text] [Related]
9. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. Basu A, Johnson TM. Environ Sci Technol; 2012 May 15; 46(10):5353-60. PubMed ID: 22424120 [Abstract] [Full Text] [Related]
10. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate. Majzlan J. Environ Sci Technol; 2011 Jun 01; 45(11):4726-32. PubMed ID: 21557572 [Abstract] [Full Text] [Related]
11. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite. Catalano JG, Luo Y, Otemuyiwa B. Environ Sci Technol; 2011 Oct 15; 45(20):8826-33. PubMed ID: 21899306 [Abstract] [Full Text] [Related]
12. Ni(II) complexation to amorphous hydrous ferric oxide: an X-ray absorption spectroscopy study. Xu Y, Axe L, Boonfueng T, Tyson TA, Trivedi P, Pandya K. J Colloid Interface Sci; 2007 Oct 01; 314(1):10-7. PubMed ID: 17561066 [Abstract] [Full Text] [Related]
13. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Crosby HA, Johnson CM, Roden EE, Beard BL. Environ Sci Technol; 2005 Sep 01; 39(17):6698-704. PubMed ID: 16190229 [Abstract] [Full Text] [Related]
14. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. Pokrovsky OS, Viers J, Freydier R. J Colloid Interface Sci; 2005 Nov 01; 291(1):192-200. PubMed ID: 15963523 [Abstract] [Full Text] [Related]
15. Contrasted redox-dependent structural control on Fe isotope fractionation during its adsorption onto and assimilation by heterotrophic soil bacteria. González AG, Poitrasson F, Jiménez-Villacorta F, Shirokova LS, Pokrovsky OS. Environ Sci Process Impacts; 2024 Feb 21; 26(2):344-356. PubMed ID: 38169006 [Abstract] [Full Text] [Related]
16. A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal. Zeng L. Water Res; 2003 Nov 21; 37(18):4351-8. PubMed ID: 14511705 [Abstract] [Full Text] [Related]
17. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction. Fredrickson JK, Kota S, Kukkadapu RK, Liu C, Zachara JM. Biodegradation; 2003 Apr 21; 14(2):91-103. PubMed ID: 12877465 [Abstract] [Full Text] [Related]
18. Adsorption of fluoride on synthetic iron (III), zirconium(IV) and binary iron(III)-zirconium (IV) oxides: comparative assessment on pH effect and isotherm. Biswas K, Bandhopadhyay D, Ghosh UC. J Environ Sci Eng; 2008 Apr 21; 50(2):153-62. PubMed ID: 19295101 [Abstract] [Full Text] [Related]
19. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions. Nedel S, Dideriksen K, Christiansen BC, Bovet N, Stipp SL. Environ Sci Technol; 2010 Jun 15; 44(12):4493-8. PubMed ID: 20496931 [Abstract] [Full Text] [Related]
20. Iron isotopic fractionation driven by low-temperature biogeochemical processes. Yin NH, Louvat P, Thibault-DE-Chanvalon A, Sebilo M, Amouroux D. Chemosphere; 2023 Mar 15; 316():137802. PubMed ID: 36640969 [Abstract] [Full Text] [Related] Page: [Next] [New Search]