These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
735 related items for PubMed ID: 21296135
1. Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel. Lundberg BB. Int J Pharm; 2011 Apr 15; 408(1-2):208-12. PubMed ID: 21296135 [Abstract] [Full Text] [Related]
2. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Shenoy D, Little S, Langer R, Amiji M. Mol Pharm; 2005 Apr 15; 2(5):357-66. PubMed ID: 16196488 [Abstract] [Full Text] [Related]
3. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Devalapally H, Shenoy D, Little S, Langer R, Amiji M. Cancer Chemother Pharmacol; 2007 Mar 15; 59(4):477-84. PubMed ID: 16862429 [Abstract] [Full Text] [Related]
4. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. Xin H, Chen L, Gu J, Ren X, Wei Z, Luo J, Chen Y, Jiang X, Sha X, Fang X. Int J Pharm; 2010 Dec 15; 402(1-2):238-47. PubMed ID: 20934500 [Abstract] [Full Text] [Related]
5. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. Soga O, van Nostrum CF, Fens M, Rijcken CJ, Schiffelers RM, Storm G, Hennink WE. J Control Release; 2005 Mar 21; 103(2):341-53. PubMed ID: 15763618 [Abstract] [Full Text] [Related]
6. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y, Pan J, Feng SS. Int J Pharm; 2010 Aug 16; 395(1-2):243-50. PubMed ID: 20472049 [Abstract] [Full Text] [Related]
7. In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles. Letchford K, Liggins R, Wasan KM, Burt H. Eur J Pharm Biopharm; 2009 Feb 16; 71(2):196-206. PubMed ID: 18762253 [Abstract] [Full Text] [Related]
8. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles. You JO, Auguste DT. Biomaterials; 2008 Apr 16; 29(12):1950-7. PubMed ID: 18255142 [Abstract] [Full Text] [Related]
9. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Hu Y, Xie J, Tong YW, Wang CH. J Control Release; 2007 Mar 12; 118(1):7-17. PubMed ID: 17241684 [Abstract] [Full Text] [Related]
10. Novel self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery. Shahin M, Lavasanifar A. Int J Pharm; 2010 Apr 15; 389(1-2):213-22. PubMed ID: 20080163 [Abstract] [Full Text] [Related]
20. A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Zhang Y, Tang L, Sun L, Bao J, Song C, Huang L, Liu K, Tian Y, Tian G, Li Z, Sun H, Mei L. Acta Biomater; 2010 Jun 15; 6(6):2045-52. PubMed ID: 19969111 [Abstract] [Full Text] [Related] Page: [Next] [New Search]