These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
245 related items for PubMed ID: 21300186
1. Initial cell pre-cultivation can maximize ECM mineralization by human mesenchymal stem cells on silk fibroin scaffolds. Thimm BW, Wüst S, Hofmann S, Hagenmüller H, Müller R. Acta Biomater; 2011 May; 7(5):2218-28. PubMed ID: 21300186 [Abstract] [Full Text] [Related]
2. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Zhang Y, Fan W, Ma Z, Wu C, Fang W, Liu G, Xiao Y. Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872 [Abstract] [Full Text] [Related]
3. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N, Kundu SC. Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [Abstract] [Full Text] [Related]
4. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB, Kundu SC. Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [Abstract] [Full Text] [Related]
5. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [Abstract] [Full Text] [Related]
6. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL. Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [Abstract] [Full Text] [Related]
7. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L, Merkle HP. Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040 [Abstract] [Full Text] [Related]
8. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Chen M, Le DQ, Baatrup A, Nygaard JV, Hein S, Bjerre L, Kassem M, Zou X, Bünger C. Acta Biomater; 2011 May; 7(5):2244-55. PubMed ID: 21195810 [Abstract] [Full Text] [Related]
9. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Yang MC, Wang SS, Chou NK, Chi NH, Huang YY, Chang YL, Shieh MJ, Chung TW. Biomaterials; 2009 Aug; 30(22):3757-65. PubMed ID: 19410289 [Abstract] [Full Text] [Related]
10. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes. Bjerre L, Bünger C, Baatrup A, Kassem M, Mygind T. J Biomed Mater Res A; 2011 Jun 01; 97(3):251-63. PubMed ID: 21442726 [Abstract] [Full Text] [Related]
11. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Pedraza CE, Marelli B, Chicatun F, McKee MD, Nazhat SN. Tissue Eng Part A; 2010 Mar 01; 16(3):781-93. PubMed ID: 19778181 [Abstract] [Full Text] [Related]
12. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G. Biotechnol Bioeng; 2004 Nov 05; 88(3):379-91. PubMed ID: 15486944 [Abstract] [Full Text] [Related]
13. Human amniotic fluid stem cells seeded in fibroin scaffold produce in vivo mineralized matrix. Maraldi T, Riccio M, Resca E, Pisciotta A, La Sala GB, Ferrari A, Bruzzesi G, Motta A, Migliaresi C, Marzona L, De Pol A. Tissue Eng Part A; 2011 Nov 05; 17(21-22):2833-43. PubMed ID: 21864161 [Abstract] [Full Text] [Related]
14. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB, Kundu SC. Biomaterials; 2009 Oct 05; 30(28):5019-30. PubMed ID: 19577292 [Abstract] [Full Text] [Related]
15. Nonwoven silk fibroin net/nano-hydroxyapatite scaffold: preparation and characterization. Zhao Y, Chen J, Chou AH, Li G, LeGeros RZ. J Biomed Mater Res A; 2009 Dec 15; 91(4):1140-9. PubMed ID: 19148924 [Abstract] [Full Text] [Related]
16. Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Kim HJ, Kim UJ, Leisk GG, Bayan C, Georgakoudi I, Kaplan DL. Macromol Biosci; 2007 May 10; 7(5):643-55. PubMed ID: 17477447 [Abstract] [Full Text] [Related]
17. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Jayakumar R, Nair SV. Tissue Eng Part A; 2010 Feb 10; 16(2):393-404. PubMed ID: 19772455 [Abstract] [Full Text] [Related]
18. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. Zhao F, Grayson WL, Ma T, Irsigler A. J Cell Physiol; 2009 May 10; 219(2):421-9. PubMed ID: 19170078 [Abstract] [Full Text] [Related]
19. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S, Motta A, Migliaresi C, Kirkpatrick CJ. Biomaterials; 2010 Sep 10; 31(27):6959-67. PubMed ID: 20619788 [Abstract] [Full Text] [Related]
20. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL. J Biomed Mater Res A; 2004 Oct 01; 71(1):25-34. PubMed ID: 15316936 [Abstract] [Full Text] [Related] Page: [Next] [New Search]