These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


301 related items for PubMed ID: 21311398

  • 1. Upregulated expression of connexin43 in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament.
    Yang HS, Lu XH, Chen DY, Yuan W, Yang LL, He HL, Chen Y.
    Spine (Phila Pa 1976); 2011 Dec 15; 36(26):2267-74. PubMed ID: 21311398
    [Abstract] [Full Text] [Related]

  • 2. Roles of the Endoplasmic Reticulum Stress Transducer OASIS in Ossification of the Posterior Longitudinal Ligament.
    Chen Y, Yang H, Miao J, Liu X, Wang X, Chen D.
    Clin Spine Surg; 2017 Feb 15; 30(1):E19-E24. PubMed ID: 28107238
    [Abstract] [Full Text] [Related]

  • 3. Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament.
    Yang HS, Lu XH, Chen DY, Yuan W, Yang LL, Chen Y, He HL.
    Eur Spine J; 2011 Sep 15; 20(9):1459-65. PubMed ID: 21442291
    [Abstract] [Full Text] [Related]

  • 4. Upregulated expression of PERK in spinal ligament fibroblasts from the patients with ossification of the posterior longitudinal ligament.
    Chen Y, Wang X, Yang H, Miao J, Liu X, Chen D.
    Eur Spine J; 2014 Feb 15; 23(2):447-54. PubMed ID: 24097291
    [Abstract] [Full Text] [Related]

  • 5. Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament.
    Iwasaki K, Furukawa KI, Tanno M, Kusumi T, Ueyama K, Tanaka M, Kudo H, Toh S, Harata S, Motomura S.
    Calcif Tissue Int; 2004 May 15; 74(5):448-57. PubMed ID: 14639470
    [Abstract] [Full Text] [Related]

  • 6. Down-regulated expression of vimentin induced by mechanical stress in fibroblasts derived from patients with ossification of the posterior longitudinal ligament.
    Zhang W, Wei P, Chen Y, Yang L, Jiang C, Jiang P, Chen D.
    Eur Spine J; 2014 Nov 15; 23(11):2410-5. PubMed ID: 24908253
    [Abstract] [Full Text] [Related]

  • 7. P2Y1 transient overexpression induced mineralization in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament of the cervical spine.
    Tanaka S, Kudo H, Asari T, Ono A, Motomura S, Toh S, Furukawa K.
    Calcif Tissue Int; 2011 Apr 15; 88(4):263-71. PubMed ID: 21210088
    [Abstract] [Full Text] [Related]

  • 8. Inhibitory effect of YQHYRJ recipe on osteoblast differentiation induced by BMP-2 in fibroblasts from posterior longitudinal ligament of mice.
    Bian Q, Jia K, Liu SF, Shu B, Liang QQ, Zhou CJ, Zhou Q, Wang YJ.
    Pharmazie; 2011 Oct 15; 66(10):784-90. PubMed ID: 22026161
    [Abstract] [Full Text] [Related]

  • 9. Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament.
    Ohishi H, Furukawa K, Iwasaki K, Ueyama K, Okada A, Motomura S, Harata S, Toh S.
    J Pharmacol Exp Ther; 2003 Jun 15; 305(3):818-24. PubMed ID: 12606604
    [Abstract] [Full Text] [Related]

  • 10. Autophagy in spinal ligament fibroblasts: evidence and possible implications for ossification of the posterior longitudinal ligament.
    Yang Y, Lin Z, Chen J, Ding S, Mao W, Shi S, Liang B.
    J Orthop Surg Res; 2020 Oct 22; 15(1):490. PubMed ID: 33092625
    [Abstract] [Full Text] [Related]

  • 11. Insulin potentiates the proliferation and bone morphogenetic protein-2-induced osteogenic differentiation of rat spinal ligament cells via extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.
    Li H, Liu D, Zhao CQ, Jiang LS, Dai LY.
    Spine (Phila Pa 1976); 2008 Oct 15; 33(22):2394-402. PubMed ID: 18923314
    [Abstract] [Full Text] [Related]

  • 12. Connexin 43 promotes ossification of the posterior longitudinal ligament through activation of the ERK1/2 and p38 MAPK pathways.
    Chen D, Liu Y, Yang H, Chen D, Zhang X, Fermandes JC, Chen Y.
    Cell Tissue Res; 2016 Mar 15; 363(3):765-73. PubMed ID: 26334722
    [Abstract] [Full Text] [Related]

  • 13. Genetic differences in the osteogenic differentiation potency according to the classification of ossification of the posterior longitudinal ligament of the cervical spine.
    Kudo H, Furukawa K, Yokoyama T, Ono A, Numasawa T, Wada K, Tanaka S, Asari T, Ueyama K, Motomura S, Toh S.
    Spine (Phila Pa 1976); 2011 May 20; 36(12):951-7. PubMed ID: 21224767
    [Abstract] [Full Text] [Related]

  • 14. Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments.
    Tanno M, Furukawa KI, Ueyama K, Harata S, Motomura S.
    Bone; 2003 Oct 20; 33(4):475-84. PubMed ID: 14555250
    [Abstract] [Full Text] [Related]

  • 15. The Effect of the NFκB-USP9X-Cx43 Axis on the Dynamic Balance of Bone Formation/Degradation during Ossification of the Posterior Longitudinal Ligament of the Cervical Spine.
    Yuan X, Guo Y, Liu J, Sun J, Shi L, Miao J, Shi J, Chen Y.
    Oxid Med Cell Longev; 2022 Oct 20; 2022():1604932. PubMed ID: 35391932
    [Abstract] [Full Text] [Related]

  • 16. Immunohistochemical demonstration of advanced glycation end products and the effects of advanced glycation end products in ossified ligament tissues in vitro.
    Yokosuka K, Park JS, Jimbo K, Yoshida T, Yamada K, Sato K, Takeuchi M, Yamagishi S, Nagata K.
    Spine (Phila Pa 1976); 2007 May 15; 32(11):E337-9. PubMed ID: 17495767
    [Abstract] [Full Text] [Related]

  • 17. Possible roles of CTGF/Hcs24 in the initiation and development of ossification of the posterior longitudinal ligament.
    Yamamoto Y, Furukawa K, Ueyama K, Nakanishi T, Takigawa M, Harata S.
    Spine (Phila Pa 1976); 2002 Sep 01; 27(17):1852-7. PubMed ID: 12221348
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Role of Cx43-Mediated NFкB Signaling Pathway in Ossification of Posterior Longitudinal Ligament: An In Vivo and In Vitro Study.
    Chen D, Chen Y, Li T, Shi L, Pan M, Chen D.
    Spine (Phila Pa 1976); 2017 Dec 01; 42(23):E1334-E1341. PubMed ID: 28338575
    [Abstract] [Full Text] [Related]

  • 20. Ossification of the posterior ligament is mediated by osterix via inhibition of the β-catenin signaling pathway.
    Shi L, Cai G, Shi J, Guo Y, Chen D, Chen D, Yang H.
    Exp Cell Res; 2016 Nov 15; 349(1):53-59. PubMed ID: 27693496
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.