These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 21318899

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A pharmacophore docking algorithm and its application to the cross-docking of 18 HIV-NNRTI's in their binding pockets.
    Daeyaert F, de Jonge M, Heeres J, Koymans L, Lewi P, Vinkers MH, Janssen PA.
    Proteins; 2004 Feb 15; 54(3):526-33. PubMed ID: 14748000
    [Abstract] [Full Text] [Related]

  • 6. Combining structure-based drug design and pharmacophores.
    Griffith R, Luu TT, Garner J, Keller PA.
    J Mol Graph Model; 2005 Apr 15; 23(5):439-46. PubMed ID: 15781186
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG.
    Bioorg Med Chem; 2008 Dec 01; 16(23):9957-74. PubMed ID: 18996019
    [Abstract] [Full Text] [Related]

  • 10. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC.
    Curr Opin Drug Discov Devel; 2008 May 01; 11(3):356-64. PubMed ID: 18428089
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Fragment shuffling: an automated workflow for three-dimensional fragment-based ligand design.
    Nisius B, Rester U.
    J Chem Inf Model; 2009 May 01; 49(5):1211-22. PubMed ID: 19413347
    [Abstract] [Full Text] [Related]

  • 13. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules.
    Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A.
    J Mol Biol; 2006 Apr 21; 358(1):289-309. PubMed ID: 16497327
    [Abstract] [Full Text] [Related]

  • 14. Interpretation of scoring functions using 3D molecular fields. Mapping the diacyl-hydrazine-binding pocket of an insect ecdysone receptor.
    Bordas B, Belai I, Lopata A, Szanto Z.
    J Chem Inf Model; 2007 Apr 21; 47(1):176-85. PubMed ID: 17238263
    [Abstract] [Full Text] [Related]

  • 15. Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase.
    Venkatarangan P, Hopfinger AJ.
    J Med Chem; 1999 Jun 17; 42(12):2169-79. PubMed ID: 10377222
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q, Yang J, Liang K, Feng L, Li S, Wan J, Xu X, Yang G, Liu D, Yang S.
    J Chem Inf Model; 2008 Sep 17; 48(9):1802-12. PubMed ID: 18707092
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.