These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
509 related items for PubMed ID: 21323376
1. Graphene/silicon nanowire Schottky junction for enhanced light harvesting. Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D. ACS Appl Mater Interfaces; 2011 Mar; 3(3):721-5. PubMed ID: 21323376 [Abstract] [Full Text] [Related]
2. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. Ye Y, Dai Y, Dai L, Shi Z, Liu N, Wang F, Fu L, Peng R, Wen X, Chen Z, Liu Z, Qin G. ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686 [Abstract] [Full Text] [Related]
3. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Ye Y, Gan L, Dai L, Dai Y, Guo X, Meng H, Yu B, Shi Z, Shang K, Qin G. Nanoscale; 2011 Apr; 3(4):1477-81. PubMed ID: 21359405 [Abstract] [Full Text] [Related]
4. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H. Nanoscale; 2012 Mar 21; 4(6):2130-3. PubMed ID: 22337348 [Abstract] [Full Text] [Related]
5. High efficiency graphene solar cells by chemical doping. Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF. Nano Lett; 2012 Jun 13; 12(6):2745-50. PubMed ID: 22554195 [Abstract] [Full Text] [Related]
6. Flexible CuS nanotubes-ITO film Schottky junction solar cells with enhanced light harvesting by using an Ag mirror. Wu C, Zhang Z, Wu Y, Lv P, Nie B, Luo L, Wang L, Hu J, Jie J. Nanotechnology; 2013 Feb 01; 24(4):045402. PubMed ID: 23299200 [Abstract] [Full Text] [Related]
7. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Lin C, Povinelli ML. Opt Express; 2009 Oct 26; 17(22):19371-81. PubMed ID: 19997158 [Abstract] [Full Text] [Related]
8. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. Wang XL, Han WQ. ACS Appl Mater Interfaces; 2010 Dec 26; 2(12):3709-13. PubMed ID: 21114292 [Abstract] [Full Text] [Related]
9. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. Liu Z, Li J, Sun ZH, Tai G, Lau SP, Yan F. ACS Nano; 2012 Jan 24; 6(1):810-8. PubMed ID: 22148872 [Abstract] [Full Text] [Related]
10. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition. Wang HW, Ting CF, Hung MK, Chiou CH, Liu YL, Liu Z, Ratinac KR, Ringer SP. Nanotechnology; 2009 Feb 04; 20(5):055601. PubMed ID: 19417348 [Abstract] [Full Text] [Related]
11. High efficiency thin-film crystalline Si/Ge tandem solar cell. Sun G, Chang F, Soref RA. Opt Express; 2010 Feb 15; 18(4):3746-53. PubMed ID: 20389384 [Abstract] [Full Text] [Related]
12. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite. Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y. Nanoscale; 2012 Jan 21; 4(2):441-3. PubMed ID: 22159842 [Abstract] [Full Text] [Related]
13. Ion doping of graphene for high-efficiency heterojunction solar cells. Li X, Xie D, Park H, Zhu M, Zeng TH, Wang K, Wei J, Wu D, Kong J, Zhu H. Nanoscale; 2013 Mar 07; 5(5):1945-8. PubMed ID: 23358527 [Abstract] [Full Text] [Related]
14. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. Kumar B, Lee KY, Park HK, Chae SJ, Lee YH, Kim SW. ACS Nano; 2011 May 24; 5(5):4197-204. PubMed ID: 21495657 [Abstract] [Full Text] [Related]
15. Light trapping in silicon nanowire solar cells. Garnett E, Yang P. Nano Lett; 2010 Mar 10; 10(3):1082-7. PubMed ID: 20108969 [Abstract] [Full Text] [Related]
16. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Mallick SB, Agrawal M, Peumans P. Opt Express; 2010 Mar 15; 18(6):5691-706. PubMed ID: 20389585 [Abstract] [Full Text] [Related]
17. High-quality graphene p-n junctions via resist-free fabrication and solution-based noncovalent functionalization. Cheng HC, Shiue RJ, Tsai CC, Wang WH, Chen YT. ACS Nano; 2011 Mar 22; 5(3):2051-9. PubMed ID: 21322639 [Abstract] [Full Text] [Related]
18. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M. ACS Nano; 2010 Jun 22; 4(6):3169-74. PubMed ID: 20481512 [Abstract] [Full Text] [Related]
19. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. He Z, Guai G, Liu J, Guo C, Loo JS, Li CM, Tan TT. Nanoscale; 2011 Nov 22; 3(11):4613-6. PubMed ID: 22006266 [Abstract] [Full Text] [Related]
20. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Grätzel M. ACS Nano; 2008 Jun 22; 2(6):1113-6. PubMed ID: 19206327 [Abstract] [Full Text] [Related] Page: [Next] [New Search]