These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 21327807
1. Effect of site-specific bronchial radon progeny deposition on the spatial and temporal distributions of cellular responses. Farkas A, Hofmann W, Balásházy I, Szoke I, Madas BG, Moustafa M. Radiat Environ Biophys; 2011 May; 50(2):281-97. PubMed ID: 21327807 [Abstract] [Full Text] [Related]
2. Alpha-hit, cellular dose, cell transformation and inactivation probability distributions of radon progenies in the bronchial epithelium. Szoke I, Balásházy I, Farkas A, Hofmann W, Szoke R, Fakir H, Kis E. Radiat Prot Dosimetry; 2006 May; 122(1-4):540-2. PubMed ID: 17145731 [Abstract] [Full Text] [Related]
4. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects. Szőke I, Farkas A, Balásházy I, Hofmann W, Madas BG, Szőke R. Int J Radiat Biol; 2012 Jun; 88(6):477-92. PubMed ID: 22420832 [Abstract] [Full Text] [Related]
6. Simulation of the effect of mucociliary clearance on the bronchial distribution of inhaled radon progenies and related cellular damage using a new deposition and clearance model for the lung. Farkas Á. Radiat Environ Biophys; 2020 Nov; 59(4):651-661. PubMed ID: 32865689 [Abstract] [Full Text] [Related]
8. Microdosimetry of radon progeny alpha particles in bronchial airway bifurcations. Fakir H, Hofmann W, Aubineau-Lanièce I. Radiat Prot Dosimetry; 2005 Nov; 117(4):382-94. PubMed ID: 15972358 [Abstract] [Full Text] [Related]
9. Interaction of alpha particles at the cellular level--implications for the radiation weighting factor. Hofmann W, Fakir H, Aubineau-Laniece I, Pihet P. Radiat Prot Dosimetry; 2004 Nov; 112(4):493-500. PubMed ID: 15623884 [Abstract] [Full Text] [Related]
10. Radon induced hyperplasia: effective adaptation reducing the local doses in the bronchial epithelium. Madas BG. J Radiol Prot; 2016 Sep; 36(3):653-666. PubMed ID: 27517484 [Abstract] [Full Text] [Related]
12. Multi-scaled Monte Carlo calculation for radon-induced cellular damage in the bronchial airway epithelium. Abu Shqair A, Kim EH. Sci Rep; 2021 May 13; 11(1):10230. PubMed ID: 33986410 [Abstract] [Full Text] [Related]
14. Simulation of deposition and clearance of inhaled particles in central human airways. Balásházy I, Farkas A, Szöke I, Hofmann W, Sturm R. Radiat Prot Dosimetry; 2003 May 13; 105(1-4):129-32. PubMed ID: 14526942 [Abstract] [Full Text] [Related]
15. Measurement of the equilibrium factor between radon and its progeny in the underground mining environment. Ntwaeaborwa OM, Kgwadi ND, Taole SH, Strydom R. Health Phys; 2004 Apr 13; 86(4):374-7. PubMed ID: 15057058 [Abstract] [Full Text] [Related]
18. Effect of inhomogeneous activity distributions and airway geometry on cellular doses in radon lung dosimetry. Szoke I, Balásházy I, Farkas A, Hofmann W. Radiat Prot Dosimetry; 2007 Apr 13; 127(1-4):68-72. PubMed ID: 17561519 [Abstract] [Full Text] [Related]
20. The degree of inhomogeneity of the absorbed cell nucleus doses in the bronchial region of the human respiratory tract. Füri P, Farkas Á, Madas BG, Hofmann W, Winkler-Heil R, Kudela G, Balásházy I. Radiat Environ Biophys; 2020 Mar 13; 59(1):173-183. PubMed ID: 31587107 [Abstract] [Full Text] [Related] Page: [Next] [New Search]