These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
300 related items for PubMed ID: 21329673
1. The cysteine-rich domain of human T1R3 is necessary for the interaction between human T1R2-T1R3 sweet receptors and a sweet-tasting protein, thaumatin. Ohta K, Masuda T, Tani F, Kitabatake N. Biochem Biophys Res Commun; 2011 Mar 18; 406(3):435-8. PubMed ID: 21329673 [Abstract] [Full Text] [Related]
2. Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin. Masuda T, Taguchi W, Sano A, Ohta K, Kitabatake N, Tani F. Biochimie; 2013 Jul 18; 95(7):1502-5. PubMed ID: 23370115 [Abstract] [Full Text] [Related]
3. Introduction of a negative charge at Arg82 in thaumatin abolished responses to human T1R2-T1R3 sweet receptors. Ohta K, Masuda T, Tani F, Kitabatake N. Biochem Biophys Res Commun; 2011 Sep 16; 413(1):41-5. PubMed ID: 21867681 [Abstract] [Full Text] [Related]
4. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Koizumi A, Nakajima K, Asakura T, Morita Y, Ito K, Shmizu-Ibuka A, Misaka T, Abe K. Biochem Biophys Res Commun; 2007 Jun 29; 358(2):585-9. PubMed ID: 17499612 [Abstract] [Full Text] [Related]
5. Interactions of the sweet-tasting proteins thaumatin and lysozyme with the human sweet-taste receptor. Ide N, Sato E, Ohta K, Masuda T, Kitabatake N. J Agric Food Chem; 2009 Jul 08; 57(13):5884-90. PubMed ID: 19489607 [Abstract] [Full Text] [Related]
6. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M. J Biol Chem; 2004 Oct 22; 279(43):45068-75. PubMed ID: 15299024 [Abstract] [Full Text] [Related]
7. From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor. Morini G, Bassoli A, Temussi PA. J Med Chem; 2005 Aug 25; 48(17):5520-9. PubMed ID: 16107151 [Abstract] [Full Text] [Related]
8. Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins. Liu B, Ha M, Meng XY, Khaleduzzaman M, Zhang Z, Li X, Cui M. Biochem Biophys Res Commun; 2012 Oct 19; 427(2):431-7. PubMed ID: 23000410 [Abstract] [Full Text] [Related]
9. Novel gurmarin-like peptides from Gymnema sylvestre and their interactions with the sweet taste receptor T1R2/T1R3. Maaroufi H. Chem Senses; 2024 Jan 01; 49():. PubMed ID: 38695158 [Abstract] [Full Text] [Related]
10. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3. Shimizu M, Goto M, Kawai T, Yamashita A, Kusakabe Y. PLoS One; 2014 Jan 01; 9(7):e100425. PubMed ID: 25029362 [Abstract] [Full Text] [Related]
11. Different functional roles of T1R subunits in the heteromeric taste receptors. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X. Proc Natl Acad Sci U S A; 2004 Sep 28; 101(39):14258-63. PubMed ID: 15353592 [Abstract] [Full Text] [Related]
12. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M. J Biol Chem; 2005 Apr 15; 280(15):15238-46. PubMed ID: 15668251 [Abstract] [Full Text] [Related]
13. The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R. Curr Pharm Des; 2006 Apr 15; 12(35):4591-600. PubMed ID: 17168764 [Abstract] [Full Text] [Related]
14. Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. Temussi PA. FEBS Lett; 2002 Aug 28; 526(1-3):1-4. PubMed ID: 12208493 [Abstract] [Full Text] [Related]
15. The sweet taste receptor: a single receptor with multiple sites and modes of interaction. Temussi P. Adv Food Nutr Res; 2007 Aug 28; 53():199-239. PubMed ID: 17900500 [Abstract] [Full Text] [Related]
16. Generation and characterization of T1R2-LacZ knock-in mouse. Iwatsuki K, Nomura M, Shibata A, Ichikawa R, Enciso PL, Wang L, Takayanagi R, Torii K, Uneyama H. Biochem Biophys Res Commun; 2010 Nov 19; 402(3):495-9. PubMed ID: 20965149 [Abstract] [Full Text] [Related]
17. Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. Assadi-Porter FM, Maillet EL, Radek JT, Quijada J, Markley JL, Max M. J Mol Biol; 2010 May 14; 398(4):584-99. PubMed ID: 20302879 [Abstract] [Full Text] [Related]
18. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Nie Y, Vigues S, Hobbs JR, Conn GL, Munger SD. Curr Biol; 2005 Nov 08; 15(21):1948-52. PubMed ID: 16271873 [Abstract] [Full Text] [Related]
19. The Heptahelical Domain of the Sweet Taste Receptor T1R2 Is a New Allosteric Binding Site for the Sweet Taste Modulator Amiloride That Modulates Sweet Taste in a Species-Dependent Manner. Zhao M, Xu XQ, Meng XY, Liu B. J Mol Neurosci; 2018 Oct 08; 66(2):207-213. PubMed ID: 30120716 [Abstract] [Full Text] [Related]
20. Modeling and Structural Characterization of the Sweet Taste Receptor Heterodimer. Perez-Aguilar JM, Kang SG, Zhang L, Zhou R. ACS Chem Neurosci; 2019 Nov 20; 10(11):4579-4592. PubMed ID: 31553164 [Abstract] [Full Text] [Related] Page: [Next] [New Search]