These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 2133543
1. Microenvironment created by stromal cells is essential for a rapid expansion of erythroid cells in mouse fetal liver. Ohneda O, Yanai N, Obinata M. Development; 1990 Oct; 110(2):379-84. PubMed ID: 2133543 [Abstract] [Full Text] [Related]
2. Spleen stromal cell lines selectively support erythroid colony formation. Yanai N, Matsuya Y, Obinata M. Blood; 1989 Nov 15; 74(7):2391-7. PubMed ID: 2804371 [Abstract] [Full Text] [Related]
3. Functional Analysis of Erythroid Progenitors by Colony-Forming Assays. Palis J, Koniski A. Methods Mol Biol; 2018 Nov 15; 1698():117-132. PubMed ID: 29076087 [Abstract] [Full Text] [Related]
4. Bovine fetal-liver stromal cells support erythroid colony formation: enhancement by insulin-like growth factor II. Li Q, Congote LF. Exp Hematol; 1995 Jan 15; 23(1):66-73. PubMed ID: 7527785 [Abstract] [Full Text] [Related]
5. Mammalian homeobox B6 expression can be correlated with erythropoietin production sites and erythropoiesis during development, but not with hematopoietic or nonhematopoietic stem cell populations. Zimmermann F, Rich IN. Blood; 1997 Apr 15; 89(8):2723-35. PubMed ID: 9108390 [Abstract] [Full Text] [Related]
6. BMP4/Smad5 dependent stress erythropoiesis is required for the expansion of erythroid progenitors during fetal development. Porayette P, Paulson RF. Dev Biol; 2008 May 01; 317(1):24-35. PubMed ID: 18374325 [Abstract] [Full Text] [Related]
7. Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) stimulates primitive and definitive erythropoiesis in mouse embryos expressing hGM-CSF receptors but not erythropoietin receptors. Hisakawa H, Sugiyama D, Nishijima I, Xu MJ, Wu H, Nakao K, Watanabe S, Katsuki M, Asano S, Arai K, Nakahata T, Tsuji K. Blood; 2001 Dec 15; 98(13):3618-25. PubMed ID: 11739165 [Abstract] [Full Text] [Related]
8. Murine erythroid cell lines derived with c-myc retroviruses respond to leukemia-inhibitory factor, erythropoietin, and interleukin 3. Cory S, Maekawa T, McNeall J, Metcalf D. Cell Growth Differ; 1991 Mar 15; 2(3):165-72. PubMed ID: 1905566 [Abstract] [Full Text] [Related]
9. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. von Lindern M, Zauner W, Mellitzer G, Steinlein P, Fritsch G, Huber K, Löwenberg B, Beug H. Blood; 1999 Jul 15; 94(2):550-9. PubMed ID: 10397722 [Abstract] [Full Text] [Related]
10. Endothelial cells create a hematopoietic inductive microenvironment preferential to erythropoiesis in the mouse spleen. Yanai N, Satoh T, Obinata M. Cell Struct Funct; 1991 Feb 15; 16(1):87-93. PubMed ID: 2032312 [Abstract] [Full Text] [Related]
11. A new type-II membrane protein in erythropoietic organs enhances erythropoiesis. Yanai N, Sato Y, Obinata M. Leukemia; 1997 Apr 15; 11 Suppl 3():484-5. PubMed ID: 9209433 [Abstract] [Full Text] [Related]
12. Measurement of generation-dependent proliferation rates and death rates during mouse erythroid progenitor cell differentiation. Akbarian V, Wang W, Audet J. Cytometry A; 2012 May 15; 81(5):382-9. PubMed ID: 22407926 [Abstract] [Full Text] [Related]
13. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Lee HY, Gao X, Barrasa MI, Li H, Elmes RR, Peters LL, Lodish HF. Nature; 2015 Jun 25; 522(7557):474-7. PubMed ID: 25970251 [Abstract] [Full Text] [Related]
14. JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways. Shi J, Yuan B, Hu W, Lodish H. Exp Hematol; 2016 Nov 25; 44(11):1044-1058.e5. PubMed ID: 27473563 [Abstract] [Full Text] [Related]
15. Assessment of the contribution of the spleen to granulocytopoiesis and erythropoiesis of the mid-gestation human fetus. Calhoun DA, Li Y, Braylan RC, Christensen RD. Early Hum Dev; 1996 Nov 21; 46(3):217-27. PubMed ID: 8922566 [Abstract] [Full Text] [Related]
16. In vitro development of primitive and definitive erythrocytes from different precursors. Nakano T, Kodama H, Honjo T. Science; 1996 May 03; 272(5262):722-4. PubMed ID: 8614833 [Abstract] [Full Text] [Related]
17. Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Panzenböck B, Bartunek P, Mapara MY, Zenke M. Blood; 1998 Nov 15; 92(10):3658-68. PubMed ID: 9808559 [Abstract] [Full Text] [Related]
18. Neutralization of autocrine transforming growth factor-beta in human cord blood CD34(+)CD38(-)Lin(-) cells promotes stem-cell-factor-mediated erythropoietin-independent early erythroid progenitor development and reduces terminal differentiation. Akel S, Petrow-Sadowski C, Laughlin MJ, Ruscetti FW. Stem Cells; 2003 Nov 15; 21(5):557-67. PubMed ID: 12968110 [Abstract] [Full Text] [Related]
19. Guinea pig serum erythropoietin (EPO) selectively stimulates guinea pig erythroid progenitors: human or mouse erythroid progenitors do not form erythroid burst-forming unit colonies in response to guinea pig serum EPO. Stopka T, Zivny JH, Goldwasser E, Prchal JF, Necas E, Prchal JT. Exp Hematol; 1998 Aug 15; 26(9):910-4. PubMed ID: 9694513 [Abstract] [Full Text] [Related]
20. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation. Ghaffari S, Kitidis C, Zhao W, Marinkovic D, Fleming MD, Luo B, Marszalek J, Lodish HF. Blood; 2006 Mar 01; 107(5):1888-91. PubMed ID: 16254141 [Abstract] [Full Text] [Related] Page: [Next] [New Search]