These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 21338074

  • 1. Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity.
    Tajima N, Takai M, Ishihara K.
    Anal Chem; 2011 Mar 15; 83(6):1969-76. PubMed ID: 21338074
    [Abstract] [Full Text] [Related]

  • 2. Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method.
    Iwata R, Satoh R, Iwasaki Y, Akiyoshi K.
    Colloids Surf B Biointerfaces; 2008 Apr 01; 62(2):288-98. PubMed ID: 18055186
    [Abstract] [Full Text] [Related]

  • 3. Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity.
    Pei Z, Anderson H, Myrskog A, Dunér G, Ingemarsson B, Aastrup T.
    Anal Biochem; 2010 Mar 15; 398(2):161-8. PubMed ID: 19962366
    [Abstract] [Full Text] [Related]

  • 4. Oriented immobilization of antibodies on a silicon wafer using Si-tagged protein A.
    Ikeda T, Hata Y, Ninomiya K, Ikura Y, Takeguchi K, Aoyagi S, Hirota R, Kuroda A.
    Anal Biochem; 2009 Feb 01; 385(1):132-7. PubMed ID: 19017523
    [Abstract] [Full Text] [Related]

  • 5. Label-free electrochemical immunosensors based on surface-initiated atom radical polymerization.
    Yuan L, Wei W, Liu S.
    Biosens Bioelectron; 2012 Feb 01; 38(1):79-85. PubMed ID: 22766469
    [Abstract] [Full Text] [Related]

  • 6. Oriented surface immobilization of antibodies at the conserved nucleotide binding site for enhanced antigen detection.
    Alves NJ, Kiziltepe T, Bilgicer B.
    Langmuir; 2012 Jun 26; 28(25):9640-8. PubMed ID: 22612330
    [Abstract] [Full Text] [Related]

  • 7. Surface-initiated atom-transfer radical polymerization of 4-acetoxystyrene for immunosensing.
    Yuan L, Wu Y, Shi H, Liu S.
    Chemistry; 2011 Jan 17; 17(3):976-83. PubMed ID: 21226115
    [Abstract] [Full Text] [Related]

  • 8. 3D antibody immobilization on a planar matrix surface.
    Feng B, Huang S, Ge F, Luo Y, Jia D, Dai Y.
    Biosens Bioelectron; 2011 Oct 15; 28(1):91-6. PubMed ID: 21802273
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection.
    Park J, Kurosawa S, Watanabe J, Ishihara K.
    Anal Chem; 2004 May 01; 76(9):2649-55. PubMed ID: 15117211
    [Abstract] [Full Text] [Related]

  • 10. Biophysical characterization of the molecular orientation of an antibody-immobilized layer using secondary ion mass spectrometry.
    Cho IH, Park JW, Lee TG, Lee H, Paek SH.
    Analyst; 2011 Apr 07; 136(7):1412-9. PubMed ID: 21327232
    [Abstract] [Full Text] [Related]

  • 11. Nanocapsule-based probe for evaluating the orientation of antibodies immobilized on a solid phase.
    Iijima M, Yoshimoto N, Niimi T, Maturana AD, Kuroda S.
    Analyst; 2013 Jun 21; 138(12):3470-7. PubMed ID: 23653905
    [Abstract] [Full Text] [Related]

  • 12. Direct immobilization of gold-binding antibody fragments for immunosensor applications.
    Ibii T, Kaieda M, Hatakeyama S, Shiotsuka H, Watanabe H, Umetsu M, Kumagai I, Imamura T.
    Anal Chem; 2010 May 15; 82(10):4229-35. PubMed ID: 20415430
    [Abstract] [Full Text] [Related]

  • 13. Optimization of antibody immobilization for on-line or off-line immunoaffinity chromatography.
    Beyer NH, Hansen MZ, Schou C, Højrup P, Heegaard NH.
    J Sep Sci; 2009 May 15; 32(10):1592-604. PubMed ID: 19472285
    [Abstract] [Full Text] [Related]

  • 14. Antibody immobilization technique using protein film for high stability and orientation control of the immobilized antibody.
    Yamazoe H.
    Mater Sci Eng C Mater Biol Appl; 2019 Jul 15; 100():209-214. PubMed ID: 30948054
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer.
    Kurosawa S, Nakamura M, Park JW, Aizawa H, Yamada K, Hirata M.
    Biosens Bioelectron; 2004 Dec 15; 20(6):1134-9. PubMed ID: 15556359
    [Abstract] [Full Text] [Related]

  • 16. Separation of antigens and antibodies by immunoaffinity chromatography.
    Sheng S, Kong F.
    Pharm Biol; 2012 Aug 15; 50(8):1038-44. PubMed ID: 22480305
    [Abstract] [Full Text] [Related]

  • 17. Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins.
    Goto Y, Matsuno R, Konno T, Takai M, Ishihara K.
    Biomacromolecules; 2008 Mar 15; 9(3):828-33. PubMed ID: 18247529
    [Abstract] [Full Text] [Related]

  • 18. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R, Kauffmann E, Ehrat M, Klok HA.
    Biomacromolecules; 2010 Dec 13; 11(12):3467-79. PubMed ID: 21090572
    [Abstract] [Full Text] [Related]

  • 19. Development of a high-performance immunolatex based on "soft landing" antibody immobilization mechanism.
    Yuan X, Fabregat D, Yoshimoto K, Nagasaki Y.
    Colloids Surf B Biointerfaces; 2012 Nov 01; 99():45-52. PubMed ID: 22005261
    [Abstract] [Full Text] [Related]

  • 20. Improvement of antibody immobilization using hyperbranched polymer and protein A.
    Shen G, Cai C, Wang K, Lu J.
    Anal Biochem; 2011 Feb 01; 409(1):22-7. PubMed ID: 20869942
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.