These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
352 related items for PubMed ID: 21339712
21. DNA libraries for the construction of phage libraries: statistical and structural requirements and synthetic methods. Lindner T, Kolmar H, Haberkorn U, Mier W. Molecules; 2011 Feb 15; 16(2):1625-41. PubMed ID: 21326140 [Abstract] [Full Text] [Related]
22. Selecting peptide ligands of microcystin-LR from phage displayed random libraries. Zhao SW, Shen PP, Zhou Y, Wei Y, Xin XB, Hua ZC. Environ Int; 2005 May 15; 31(4):535-41. PubMed ID: 15788194 [Abstract] [Full Text] [Related]
23. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library. Bakhshinejad B, Zade HM, Shekarabi HS, Neman S. Amino Acids; 2016 Dec 15; 48(12):2699-2716. PubMed ID: 27650972 [Abstract] [Full Text] [Related]
24. Selection of phage displayed peptides from a random 10-mer library recognising a peptide target. Bremnes T, Lauvrak V, Lindqvist B, Bakke O. Immunotechnology; 1998 Jun 15; 4(1):21-8. PubMed ID: 9661811 [Abstract] [Full Text] [Related]
25. Cross-reactive epitope mimics in a fragmented-genome phage display library derived from the rickettsia, Cowdria ruminantium. Fehrsen J, du Plessis DH. Immunotechnology; 1999 Mar 15; 4(3-4):175-84. PubMed ID: 10231087 [Abstract] [Full Text] [Related]
26. Biotin-tagged cDNA expression libraries displayed on lambda phage: a new tool for the selection of natural protein ligands. Ansuini H, Cicchini C, Nicosia A, Tripodi M, Cortese R, Luzzago A. Nucleic Acids Res; 2002 Aug 01; 30(15):e78. PubMed ID: 12140340 [Abstract] [Full Text] [Related]
27. [Screening of tuberculosis specific antibody binding peptides]. Yang HS, Hu ZY, Liu ZH, Wang J, Sha W, Yang H. Zhonghua Yu Fang Yi Xue Za Zhi; 2011 Jan 01; 45(1):12-6. PubMed ID: 21418812 [Abstract] [Full Text] [Related]
28. A combination of in vitro techniques for efficient discovery of functional monoclonal antibodies against human CXC chemokine receptor-2 (CXCR2). Boshuizen RS, Marsden C, Turkstra J, Rossant CJ, Slootstra J, Copley C, Schwamborn K. MAbs; 2014 Jan 01; 6(6):1415-24. PubMed ID: 25484047 [Abstract] [Full Text] [Related]
29. Strategies for the construction and use of peptide and antibody libraries displayed on phages. Pini A, Giuliani A, Ricci C, Runci Y, Bracci L. Curr Protein Pept Sci; 2004 Dec 01; 5(6):487-96. PubMed ID: 15581418 [Abstract] [Full Text] [Related]
30. The selection performance of an antibody library displayed on filamentous phage coat proteins p9, p3 and truncated p3. Huovinen T, Syrjänpää M, Sanmark H, Seppä T, Akter S, Khan LM, Lamminmäki U. BMC Res Notes; 2014 Sep 19; 7():661. PubMed ID: 25238965 [Abstract] [Full Text] [Related]
31. Identification of measles virus epitopes using an ultra-fast method of panning phage-displayed random peptide libraries. Yu X, Barmina O, Burgoon M, Gilden D. J Virol Methods; 2009 Mar 19; 156(1-2):169-73. PubMed ID: 19095007 [Abstract] [Full Text] [Related]
32. Selection of peptide ligands binding to the basolateral cell surface of proximal convoluted tubules. Audigé A, Frick C, Frey FJ, Mazzucchelli L, Odermatt A. Kidney Int; 2002 Jan 19; 61(1):342-8. PubMed ID: 11786117 [Abstract] [Full Text] [Related]
33. Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library. Krumpe LR, Schumacher KM, McMahon JB, Makowski L, Mori T. BMC Biotechnol; 2007 Oct 05; 7():65. PubMed ID: 17919322 [Abstract] [Full Text] [Related]
34. Phage-displayed random peptide libraries in mice: toxicity after serial panning. Krag DN, Fuller SP, Oligino L, Pero SC, Weaver DL, Soden AL, Hebert C, Mills S, Liu C, Peterson D. Cancer Chemother Pharmacol; 2002 Oct 05; 50(4):325-32. PubMed ID: 12357308 [Abstract] [Full Text] [Related]
35. Phage display screening against a set of targets to establish peptide-based sugar mimetics and molecular docking to predict binding site. Yu L, Yu PS, Yee Yen Mui E, McKelvie JC, Pham TP, Yap YW, Wong WQ, Wu J, Deng W, Orner BP. Bioorg Med Chem; 2009 Jul 01; 17(13):4825-32. PubMed ID: 19447041 [Abstract] [Full Text] [Related]
36. Comparison of bacterial and phage display peptide libraries in search of target-binding motif. Lunder M, Bratkovic T, Doljak B, Kreft S, Urleb U, Strukelj B, Plazar N. Appl Biochem Biotechnol; 2005 Nov 01; 127(2):125-31. PubMed ID: 16258189 [Abstract] [Full Text] [Related]
37. Phage-displayed peptide ligands for pancreatic alpha-amylase cross-react with barley alpha-amylase. Wong DW, Robertson GH, Tillin SJ, Wong C. J Agric Food Chem; 1999 Sep 01; 47(9):3934-7. PubMed ID: 10552746 [Abstract] [Full Text] [Related]
38. Selection of internalizing ligand-display phage using rolling circle amplification for phage recovery. Burg M, Ravey EP, Gonzales M, Amburn E, Faix PH, Baird A, Larocca D. DNA Cell Biol; 2004 Jul 01; 23(7):457-62. PubMed ID: 15294095 [Abstract] [Full Text] [Related]
39. Homodimeric peptides displayed by the major coat protein of filamentous phage. Zwick MB, Shen J, Scott JK. J Mol Biol; 2000 Jul 07; 300(2):307-20. PubMed ID: 10873467 [Abstract] [Full Text] [Related]
40. Clustering of disulfide-rich peptides provides scaffolds for hit discovery by phage display: application to interleukin-23. Barkan DT, Cheng XL, Celino H, Tran TT, Bhandari A, Craik CS, Sali A, Smythe ML. BMC Bioinformatics; 2016 Nov 23; 17(1):481. PubMed ID: 27881076 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]