These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


329 related items for PubMed ID: 21340095

  • 1. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments.
    Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer G, Albert J, Popp J.
    Lab Chip; 2011 Apr 21; 11(8):1484-90. PubMed ID: 21340095
    [Abstract] [Full Text] [Related]

  • 2. Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps.
    Dochow S, Beleites C, Henkel T, Mayer G, Albert J, Clement J, Krafft C, Popp J.
    Anal Bioanal Chem; 2013 Mar 21; 405(8):2743-6. PubMed ID: 23371531
    [Abstract] [Full Text] [Related]

  • 3. An integrated optofluidic platform for Raman-activated cell sorting.
    Lau AY, Lee LP, Chan JW.
    Lab Chip; 2008 Jul 21; 8(7):1116-20. PubMed ID: 18584087
    [Abstract] [Full Text] [Related]

  • 4. Raman tweezers and their application to the study of singly trapped eukaryotic cells.
    Snook RD, Harvey TJ, Correia Faria E, Gardner P.
    Integr Biol (Camb); 2009 Jan 21; 1(1):43-52. PubMed ID: 20023790
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Towards detection and identification of circulating tumour cells using Raman spectroscopy.
    Neugebauer U, Bocklitz T, Clement JH, Krafft C, Popp J.
    Analyst; 2010 Dec 21; 135(12):3178-82. PubMed ID: 20941448
    [Abstract] [Full Text] [Related]

  • 7. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.
    Ramser K, Enger J, Goksör M, Hanstorp D, Logg K, Käll M.
    Lab Chip; 2005 Apr 21; 5(4):431-6. PubMed ID: 15791341
    [Abstract] [Full Text] [Related]

  • 8. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.
    Wang X, Chen S, Kong M, Wang Z, Costa KD, Li RA, Sun D.
    Lab Chip; 2011 Nov 07; 11(21):3656-62. PubMed ID: 21918752
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. [Study of Raman spectroscopy of optically trapped human red blood cell affected by direct current].
    Yue L, Wang G, Fang L, Yao H, Yuan Z, Mo H.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr 07; 24(2):404-8. PubMed ID: 17591270
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
    Bellini N, Vishnubhatla KC, Bragheri F, Ferrara L, Minzioni P, Ramponi R, Cristiani I, Osellame R.
    Opt Express; 2010 Mar 01; 18(5):4679-88. PubMed ID: 20389480
    [Abstract] [Full Text] [Related]

  • 16. Towards high-throughput microfluidic Raman-activated cell sorting.
    Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, Xu J, Ma B.
    Analyst; 2015 Sep 21; 140(18):6163-74. PubMed ID: 26225617
    [Abstract] [Full Text] [Related]

  • 17. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M, Merenda F, Piguet J, Salathé RP, Vogel H.
    Lab Chip; 2011 Jul 21; 11(14):2432-9. PubMed ID: 21655617
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Dielectrophoresis-Raman spectroscopy system for analysing suspended nanoparticles.
    Chrimes AF, Kayani AA, Khoshmanesh K, Stoddart PR, Mulvaney P, Mitchell A, Kalantar-Zadeh K.
    Lab Chip; 2011 Mar 07; 11(5):921-8. PubMed ID: 21267497
    [Abstract] [Full Text] [Related]

  • 20. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications.
    Lincoln B, Schinkinger S, Travis K, Wottawah F, Ebert S, Sauer F, Guck J.
    Biomed Microdevices; 2007 Oct 07; 9(5):703-10. PubMed ID: 17505883
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.