These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 21346305
1. Si-Sb-Te materials for phase change memory applications. Rao F, Song Z, Ren K, Zhou X, Cheng Y, Wu L, Liu B. Nanotechnology; 2011 Apr 08; 22(14):145702. PubMed ID: 21346305 [Abstract] [Full Text] [Related]
2. Reversibility and stability of ZnO-Sb₂Te₃ nanocomposite films for phase change memory applications. Wang G, Chen Y, Shen X, Li J, Wang R, Lu Y, Dai S, Xu T, Nie Q. ACS Appl Mater Interfaces; 2014 Jun 11; 6(11):8488-96. PubMed ID: 24802948 [Abstract] [Full Text] [Related]
3. SiO2 doped Ge2Sb2Te5 thin films with high thermal efficiency for applications in phase change random access memory. Ryu SW, Lyeo HK, Lee JH, Ahn YB, Kim GH, Kim CH, Kim SG, Lee SH, Kim KY, Kim JH, Kim W, Hwang CS, Kim HJ. Nanotechnology; 2011 Jun 24; 22(25):254005. PubMed ID: 21572208 [Abstract] [Full Text] [Related]
4. Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. Milliron DJ, Raoux S, Shelby RM, Jordan-Sweet J. Nat Mater; 2007 May 24; 6(5):352-6. PubMed ID: 17417642 [Abstract] [Full Text] [Related]
5. Characterization of Femtosecond laser-irradiation crystallization and structure of multiple periodic Si/Sb₈₀Te₂₀ nanocomposite films by coherent phonon spectroscopy. Zhu W, Wang C, Sun M, Li S, Zhai J, Lai T. Opt Express; 2011 Nov 07; 19(23):22684-91. PubMed ID: 22109149 [Abstract] [Full Text] [Related]
6. Influence of Si and N additions on structure and phase stability of Ge(2)Sb(2)Te(5) thin films. Kölpin H, Music D, Laptyeva G, Ghadimi R, Merget F, Richter S, Mykhaylonka R, Mayer J, Schneider JM. J Phys Condens Matter; 2009 Oct 28; 21(43):435501. PubMed ID: 21832438 [Abstract] [Full Text] [Related]
8. Incorporation of Si and SiO(x) into diamond-like carbon films: impact on surface properties and osteoblast adhesion. Randeniya LK, Bendavid A, Martin PJ, Amin MS, Preston EW, Magdon Ismail FS, Coe S. Acta Biomater; 2009 Jun 16; 5(5):1791-7. PubMed ID: 19233753 [Abstract] [Full Text] [Related]
9. Simulation-based comparison of cell design concepts for phase change random access memory. Kim DH, Merget F, Först M, Kurz H. J Nanosci Nanotechnol; 2007 Jan 16; 7(1):298-305. PubMed ID: 17455495 [Abstract] [Full Text] [Related]
10. Electronic structure of Te/Sb/Ge and Sb/Te/Ge multi layer films using photoelectron spectroscopy. Baeck JH, Ann YK, Jeong KH, Cho MH, Ko DH, Oh JH, Jeong H. J Am Chem Soc; 2009 Sep 30; 131(38):13634-8. PubMed ID: 19725494 [Abstract] [Full Text] [Related]
11. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Hegedüs J, Elliott SR. Nat Mater; 2008 May 30; 7(5):399-405. PubMed ID: 18362909 [Abstract] [Full Text] [Related]
12. Spectroscopic analysis on metal-oxide-semiconductor light-emitting diodes with buried Si nanocrystals and nano-pyramids in SiO(x) film. Lin GR. J Nanosci Nanotechnol; 2008 Mar 30; 8(3):1092-100. PubMed ID: 18468109 [Abstract] [Full Text] [Related]
13. A new series of long-range ordered metastable phases in the system M-Sb-Te (M = Ge, Ag). Schneider MN, Seibald M, Oeckler O. Dalton Trans; 2009 Mar 21; (11):2004-11. PubMed ID: 19259571 [Abstract] [Full Text] [Related]
14. EXAFS study of Sb-Te alloy films. Tani K, Yiwata N, Harigaya M, Emura S, Nakata Y. J Synchrotron Radiat; 2001 Mar 01; 8(Pt 2):749-51. PubMed ID: 11512918 [Abstract] [Full Text] [Related]
15. Reaction Mechanism Underlying Atomic Layer Deposition of Antimony Telluride Thin Films. Han B, Kim YJ, Park JM, Yusup LL, Ishii H, Lansalot-Matras C, Lee WJ. J Nanosci Nanotechnol; 2016 May 01; 16(5):4924-8. PubMed ID: 27483847 [Abstract] [Full Text] [Related]
16. Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory. Xia M, Zhu M, Wang Y, Song Z, Rao F, Wu L, Cheng Y, Song S. ACS Appl Mater Interfaces; 2015 Apr 15; 7(14):7627-34. PubMed ID: 25805549 [Abstract] [Full Text] [Related]
17. Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. Zhou M, Li JF, Kita T. J Am Chem Soc; 2008 Apr 02; 130(13):4527-32. PubMed ID: 18327945 [Abstract] [Full Text] [Related]
18. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. Poudeu PF, D'Angelo J, Kong H, Downey A, Short JL, Pcionek R, Hogan TP, Uher C, Kanatzidis MG. J Am Chem Soc; 2006 Nov 08; 128(44):14347-55. PubMed ID: 17076508 [Abstract] [Full Text] [Related]
19. Cationic clathrate I Si(46-x)P(x)Te(y) (6.6(1) < or = y < or = 7.5(1), x < or = 2y): crystal structure, homogeneity range, and physical properties. Zaikina JV, Kovnir KA, Burkhardt U, Schnelle W, Haarmann F, Schwarz U, Grin Y, Shevelkov AV. Inorg Chem; 2009 Apr 20; 48(8):3720-30. PubMed ID: 19281208 [Abstract] [Full Text] [Related]
20. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures. Loke D, Shi L, Wang W, Zhao R, Yang H, Ng LT, Lim KG, Chong TC, Yeo YC. Nanotechnology; 2011 Jun 24; 22(25):254019. PubMed ID: 21572204 [Abstract] [Full Text] [Related] Page: [Next] [New Search]