These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
241 related items for PubMed ID: 21347376
1. Large induces functional glycans in an O-mannosylation dependent manner and targets GlcNAc terminals on alpha-dystroglycan. Hu Y, Li ZF, Wu X, Lu Q. PLoS One; 2011 Feb 09; 6(2):e16866. PubMed ID: 21347376 [Abstract] [Full Text] [Related]
2. Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. Patnaik SK, Stanley P. J Biol Chem; 2005 May 27; 280(21):20851-9. PubMed ID: 15788414 [Abstract] [Full Text] [Related]
3. Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. Larsen ISB, Narimatsu Y, Joshi HJ, Yang Z, Harrison OJ, Brasch J, Shapiro L, Honig B, Vakhrushev SY, Clausen H, Halim A. J Biol Chem; 2017 Jul 07; 292(27):11586-11598. PubMed ID: 28512129 [Abstract] [Full Text] [Related]
4. Differential glycosylation of α-dystroglycan and proteins other than α-dystroglycan by like-glycosyltransferase. Zhang P, Hu H. Glycobiology; 2012 Feb 07; 22(2):235-47. PubMed ID: 21930648 [Abstract] [Full Text] [Related]
5. Small molecules enhance functional O-mannosylation of Alpha-dystroglycan. Lv F, Li ZF, Hu W, Wu X. Bioorg Med Chem; 2015 Dec 15; 23(24):7661-70. PubMed ID: 26652968 [Abstract] [Full Text] [Related]
6. Mutational and functional analysis of Large in a novel CHO glycosylation mutant. Aguilan JT, Sundaram S, Nieves E, Stanley P. Glycobiology; 2009 Sep 15; 19(9):971-86. PubMed ID: 19470663 [Abstract] [Full Text] [Related]
7. Drosophila Dystroglycan is a target of O-mannosyltransferase activity of two protein O-mannosyltransferases, Rotated Abdomen and Twisted. Nakamura N, Stalnaker SH, Lyalin D, Lavrova O, Wells L, Panin VM. Glycobiology; 2010 Mar 15; 20(3):381-94. PubMed ID: 19969597 [Abstract] [Full Text] [Related]
8. AGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan. Yagi H, Nakagawa N, Saito T, Kiyonari H, Abe T, Toda T, Wu SW, Khoo KH, Oka S, Kato K. Sci Rep; 2013 Nov 21; 3():3288. PubMed ID: 24256719 [Abstract] [Full Text] [Related]
9. Glycomic analyses of mouse models of congenital muscular dystrophy. Stalnaker SH, Aoki K, Lim JM, Porterfield M, Liu M, Satz JS, Buskirk S, Xiong Y, Zhang P, Campbell KP, Hu H, Live D, Tiemeyer M, Wells L. J Biol Chem; 2011 Jun 17; 286(24):21180-90. PubMed ID: 21460210 [Abstract] [Full Text] [Related]
11. GTDC2 modifies O-mannosylated α-dystroglycan in the endoplasmic reticulum to generate N-acetyl glucosamine epitopes reactive with CTD110.6 antibody. Ogawa M, Nakamura N, Nakayama Y, Kurosaka A, Manya H, Kanagawa M, Endo T, Furukawa K, Okajima T. Biochem Biophys Res Commun; 2013 Oct 11; 440(1):88-93. PubMed ID: 24041696 [Abstract] [Full Text] [Related]
12. Human natural killer-1 sulfotransferase (HNK-1ST)-induced sulfate transfer regulates laminin-binding glycans on α-dystroglycan. Nakagawa N, Manya H, Toda T, Endo T, Oka S. J Biol Chem; 2012 Aug 31; 287(36):30823-32. PubMed ID: 22801424 [Abstract] [Full Text] [Related]
13. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Manya H, Endo T. Biochim Biophys Acta Gen Subj; 2017 Oct 31; 1861(10):2462-2472. PubMed ID: 28711406 [Abstract] [Full Text] [Related]
14. Mammalian O-mannosylation: unsolved questions of structure/function. Stalnaker SH, Stuart R, Wells L. Curr Opin Struct Biol; 2011 Oct 31; 21(5):603-9. PubMed ID: 21945038 [Abstract] [Full Text] [Related]
15. High throughput screening for compounds that alter muscle cell glycosylation identifies new role for N-glycans in regulating sarcolemmal protein abundance and laminin binding. Cabrera PV, Pang M, Marshall JL, Kung R, Nelson SF, Stalnaker SH, Wells L, Crosbie-Watson RH, Baum LG. J Biol Chem; 2012 Jun 29; 287(27):22759-70. PubMed ID: 22570487 [Abstract] [Full Text] [Related]
16. [Recent Advances in α-dystroglycanopathy]. Kuga A, Kanagawa M, Toda T. Brain Nerve; 2011 Nov 29; 63(11):1189-95. PubMed ID: 22068471 [Abstract] [Full Text] [Related]
17. Protein O-mannosylation in animal development and physiology: from human disorders to Drosophila phenotypes. Nakamura N, Lyalin D, Panin VM. Semin Cell Dev Biol; 2010 Aug 29; 21(6):622-30. PubMed ID: 20362685 [Abstract] [Full Text] [Related]
18. HNK-1 sulfotransferase-dependent sulfation regulating laminin-binding glycans occurs in the post-phosphoryl moiety on α-dystroglycan. Nakagawa N, Takematsu H, Oka S. Glycobiology; 2013 Sep 29; 23(9):1066-74. PubMed ID: 23723439 [Abstract] [Full Text] [Related]
19. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Carss KJ, Stevens E, Foley AR, Cirak S, Riemersma M, Torelli S, Hoischen A, Willer T, van Scherpenzeel M, Moore SA, Messina S, Bertini E, Bönnemann CG, Abdenur JE, Grosmann CM, Kesari A, Punetha J, Quinlivan R, Waddell LB, Young HK, Wraige E, Yau S, Brodd L, Feng L, Sewry C, MacArthur DG, North KN, Hoffman E, Stemple DL, Hurles ME, van Bokhoven H, Campbell KP, Lefeber DJ, UK10K Consortium, Lin YY, Muntoni F. Am J Hum Genet; 2013 Jul 11; 93(1):29-41. PubMed ID: 23768512 [Abstract] [Full Text] [Related]
20. O-Mannose and O-N-acetyl galactosamine glycosylation of mammalian α-dystroglycan is conserved in a region-specific manner. Gomez Toledo A, Raducu M, Cruces J, Nilsson J, Halim A, Larson G, Rüetschi U, Grahn A. Glycobiology; 2012 Nov 11; 22(11):1413-23. PubMed ID: 22781125 [Abstract] [Full Text] [Related] Page: [Next] [New Search]