These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 21350762

  • 1. Nucleotide-driven conformational changes in the reverse gyrase helicase-like domain couple the nucleotide cycle to DNA processing.
    del Toro Duany Y, Klostermeier D.
    Phys Chem Chem Phys; 2011 Jun 07; 13(21):10009-19. PubMed ID: 21350762
    [Abstract] [Full Text] [Related]

  • 2. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y, Klostermeier D, Rudolph MG.
    Biochemistry; 2011 Jul 05; 50(26):5816-23. PubMed ID: 21627332
    [Abstract] [Full Text] [Related]

  • 3. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP, Klostermeier D.
    J Mol Biol; 2007 Aug 03; 371(1):197-209. PubMed ID: 17560602
    [Abstract] [Full Text] [Related]

  • 4. The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling.
    Ganguly A, Del Toro Duany Y, Rudolph MG, Klostermeier D.
    Nucleic Acids Res; 2011 Mar 03; 39(5):1789-800. PubMed ID: 21051354
    [Abstract] [Full Text] [Related]

  • 5. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A, del Toro Duany Y, Klostermeier D.
    J Mol Biol; 2013 Jan 09; 425(1):32-40. PubMed ID: 23123378
    [Abstract] [Full Text] [Related]

  • 6. Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis.
    Del Toro Duany Y, Ganguly A, Klostermeier D.
    Biol Chem; 2014 Jan 09; 395(1):83-93. PubMed ID: 23959663
    [Abstract] [Full Text] [Related]

  • 7. A β-hairpin is a Minimal Latch that Supports Positive Supercoiling by Reverse Gyrase.
    Collin F, Weisslocker-Schaetzel M, Klostermeier D.
    J Mol Biol; 2020 Jul 24; 432(16):4762-4771. PubMed ID: 32592697
    [Abstract] [Full Text] [Related]

  • 8. The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain.
    del Toro Duany Y, Jungblut SP, Schmidt AS, Klostermeier D.
    Nucleic Acids Res; 2008 Oct 24; 36(18):5882-95. PubMed ID: 18796525
    [Abstract] [Full Text] [Related]

  • 9. Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling.
    Rudolph MG, del Toro Duany Y, Jungblut SP, Ganguly A, Klostermeier D.
    Nucleic Acids Res; 2013 Jan 24; 41(2):1058-70. PubMed ID: 23209025
    [Abstract] [Full Text] [Related]

  • 10. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain.
    Mhaindarkar VP, Rasche R, Kümmel D, Rudolph MG, Klostermeier D.
    Acta Crystallogr D Struct Biol; 2023 Jun 01; 79(Pt 6):498-507. PubMed ID: 37204816
    [Abstract] [Full Text] [Related]

  • 11. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC.
    Biochemistry; 2003 May 27; 42(20):5993-6004. PubMed ID: 12755601
    [Abstract] [Full Text] [Related]

  • 12. Mutational analysis of the helicase-like domain of Thermotoga maritima reverse gyrase.
    de la Tour CB, Amrani L, Cossard R, Neuman KC, Serre MC, Duguet M.
    J Biol Chem; 2008 Oct 10; 283(41):27395-27402. PubMed ID: 18614530
    [Abstract] [Full Text] [Related]

  • 13. Reverse gyrase--recent advances and current mechanistic understanding of positive DNA supercoiling.
    Lulchev P, Klostermeier D.
    Nucleic Acids Res; 2014 Jul 10; 42(13):8200-13. PubMed ID: 25013168
    [Abstract] [Full Text] [Related]

  • 14. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M.
    Nucleic Acids Res; 2005 Jul 10; 33(2):564-76. PubMed ID: 15673717
    [Abstract] [Full Text] [Related]

  • 15. Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms.
    D'Amaro A, Rossi M, Ciaramella M.
    Ital J Biochem; 2007 Jun 10; 56(2):103-9. PubMed ID: 17722650
    [Abstract] [Full Text] [Related]

  • 16. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A, Klostermeier D.
    DNA Repair (Amst); 2014 Apr 10; 16():23-34. PubMed ID: 24674625
    [Abstract] [Full Text] [Related]

  • 17. Crystal structure of full length topoisomerase I from Thermotoga maritima.
    Hansen G, Harrenga A, Wieland B, Schomburg D, Reinemer P.
    J Mol Biol; 2006 May 19; 358(5):1328-40. PubMed ID: 16600296
    [Abstract] [Full Text] [Related]

  • 18. Reverse gyrase and genome stability in hyperthermophilic organisms.
    Perugino G, Valenti A, D'amaro A, Rossi M, Ciaramella M.
    Biochem Soc Trans; 2009 Feb 19; 37(Pt 1):69-73. PubMed ID: 19143604
    [Abstract] [Full Text] [Related]

  • 19. Single-molecule FRET reveals nucleotide-driven conformational changes in molecular machines and their link to RNA unwinding and DNA supercoiling.
    Klostermeier D.
    Biochem Soc Trans; 2011 Apr 19; 39(2):611-6. PubMed ID: 21428949
    [Abstract] [Full Text] [Related]

  • 20. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling.
    Déclais AC, Marsault J, Confalonieri F, de La Tour CB, Duguet M.
    J Biol Chem; 2000 Jun 30; 275(26):19498-504. PubMed ID: 10748189
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.