These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 21354590
1. Arsenic release from arsenic-bearing Fe-Mn binary oxide: effects of E(h) condition. Xu W, Wang H, Liu R, Zhao X, Qu J. Chemosphere; 2011 May; 83(7):1020-7. PubMed ID: 21354590 [Abstract] [Full Text] [Related]
2. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Torres NT, Och LM, Hauser PC, Furrer G, Brandl H, Vologina E, Sturm M, Bürgmann H, Müller B. Environ Sci Process Impacts; 2014 Apr; 16(4):879-89. PubMed ID: 24619231 [Abstract] [Full Text] [Related]
3. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K, Mikutta C, Kretzschmar R. Environ Sci Technol; 2014 Oct 07; 48(19):11320-9. PubMed ID: 25243611 [Abstract] [Full Text] [Related]
4. Influence of the structure and composition of Fe-Mn binary oxides on rGO on As(III) removal from aquifers. Sha T, Hu W, Dong J, Chi Z, Zhao Y, Huang H. J Environ Sci (China); 2020 Feb 07; 88():133-144. PubMed ID: 31862055 [Abstract] [Full Text] [Related]
5. Nanostructured Mn-Fe Binary Mixed Oxide: Synthesis, Characterization and Evaluation for Arsenic Removal. Pillewan P, Mukherjee S, Bansiwal A, Rayalu S. J Environ Sci Eng; 2014 Jul 07; 56(3):263-8. PubMed ID: 26563075 [Abstract] [Full Text] [Related]
6. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide. Liu R, Xu W, He Z, Lan H, Liu H, Qu J, Prasai T. Chemosphere; 2015 Nov 07; 138():616-24. PubMed ID: 26218341 [Abstract] [Full Text] [Related]
7. Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide. Chang F, Qu J, Liu R, Zhao X, Lei P. J Environ Sci (China); 2010 Nov 07; 22(1):1-6. PubMed ID: 20397380 [Abstract] [Full Text] [Related]
8. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH, Jean JS, Lee MK, Liu CC, Bundschuh J, Yang HJ, Lee JF, Lee YC. Water Res; 2010 Nov 07; 44(19):5556-74. PubMed ID: 20875661 [Abstract] [Full Text] [Related]
9. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Zhang G, Liu F, Liu H, Qu J, Liu R. Environ Sci Technol; 2014 Sep 02; 48(17):10316-22. PubMed ID: 25093452 [Abstract] [Full Text] [Related]
10. The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide. Xu W, Wang H, Liu R, Zhao X, Qu J. J Colloid Interface Sci; 2011 Nov 01; 363(1):320-6. PubMed ID: 21840528 [Abstract] [Full Text] [Related]
11. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas. Sharif MU, Davis RK, Steele KF, Kim B, Hays PD, Kresse TM, Fazio JA. J Contam Hydrol; 2008 Jul 29; 99(1-4):49-67. PubMed ID: 18486990 [Abstract] [Full Text] [Related]
12. Fabrication of magnetic porous Fe-Mn binary oxide nanowires with superior capability for removal of As(III) from water. Cui HJ, Cai JK, Zhao H, Yuan B, Ai CL, Fu ML. J Hazard Mater; 2014 Aug 30; 279():26-31. PubMed ID: 25036997 [Abstract] [Full Text] [Related]
13. Arsenic desorption from ferric and manganese binary oxide by competitive anions: significance of pH. Xu W, Wang H, Wu K, Liu R, Gong W, Qu J. Water Environ Res; 2012 Jun 30; 84(6):521-8. PubMed ID: 22866393 [Abstract] [Full Text] [Related]
14. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy. Wu Y, Li W, Sparks DL. Environ Sci Technol; 2015 Nov 17; 49(22):13360-8. PubMed ID: 26477604 [Abstract] [Full Text] [Related]
15. Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Zhang GS, Qu JH, Liu HJ, Liu RP, Li GT. Environ Sci Technol; 2007 Jul 01; 41(13):4613-9. PubMed ID: 17695905 [Abstract] [Full Text] [Related]
16. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide. Shan C, Tong M. Water Res; 2013 Jun 15; 47(10):3411-21. PubMed ID: 23587265 [Abstract] [Full Text] [Related]
17. Arsenic removal from a high-arsenic wastewater using in situ formed Fe-Mn binary oxide combined with coagulation by poly-aluminum chloride. Wu K, Wang H, Liu R, Zhao X, Liu H, Qu J. J Hazard Mater; 2011 Jan 30; 185(2-3):990-5. PubMed ID: 21051143 [Abstract] [Full Text] [Related]
18. Adsorption and catalytic oxidation of arsenite on Fe-Mn nodules in the presence of oxygen. Rady O, Liu L, Yang X, Tang X, Tan W, Qiu G. Chemosphere; 2020 Nov 30; 259():127503. PubMed ID: 32645597 [Abstract] [Full Text] [Related]
19. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. An B, Zhao D. J Hazard Mater; 2012 Apr 15; 211-212():332-41. PubMed ID: 22119304 [Abstract] [Full Text] [Related]
20. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Bai Y, Yang T, Liang J, Qu J. Water Res; 2016 Jul 01; 98():119-27. PubMed ID: 27088246 [Abstract] [Full Text] [Related] Page: [Next] [New Search]