These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


386 related items for PubMed ID: 21359405

  • 1. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells.
    Ye Y, Gan L, Dai L, Dai Y, Guo X, Meng H, Yu B, Shi Z, Shang K, Qin G.
    Nanoscale; 2011 Apr; 3(4):1477-81. PubMed ID: 21359405
    [Abstract] [Full Text] [Related]

  • 2. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y, Dai Y, Dai L, Shi Z, Liu N, Wang F, Fu L, Peng R, Wen X, Chen Z, Liu Z, Qin G.
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686
    [Abstract] [Full Text] [Related]

  • 3. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.
    Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y.
    Nanoscale; 2012 Jan 21; 4(2):441-3. PubMed ID: 22159842
    [Abstract] [Full Text] [Related]

  • 4. Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions.
    Gao Z, Jin W, Zhou Y, Dai Y, Yu B, Liu C, Xu W, Li Y, Peng H, Liu Z, Dai L.
    Nanoscale; 2013 Jun 21; 5(12):5576-81. PubMed ID: 23681339
    [Abstract] [Full Text] [Related]

  • 5. Graphene/silicon nanowire Schottky junction for enhanced light harvesting.
    Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D.
    ACS Appl Mater Interfaces; 2011 Mar 21; 3(3):721-5. PubMed ID: 21323376
    [Abstract] [Full Text] [Related]

  • 6. CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications.
    Yan J, Ye Q, Wang X, Yu B, Zhou F.
    Nanoscale; 2012 Mar 21; 4(6):2109-16. PubMed ID: 22349081
    [Abstract] [Full Text] [Related]

  • 7. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS.
    Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H.
    Nanoscale; 2012 Mar 21; 4(6):2130-3. PubMed ID: 22337348
    [Abstract] [Full Text] [Related]

  • 8. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.
    Zhu G, Pan L, Xu T, Zhao Q, Lu B, Sun Z.
    Nanoscale; 2011 May 21; 3(5):2188-93. PubMed ID: 21451826
    [Abstract] [Full Text] [Related]

  • 9. Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control.
    Hwang JY, Lee SA, Lee YH, Seok SI.
    ACS Appl Mater Interfaces; 2010 May 21; 2(5):1343-8. PubMed ID: 20420438
    [Abstract] [Full Text] [Related]

  • 10. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition.
    Yu XY, Liao JY, Qiu KQ, Kuang DB, Su CY.
    ACS Nano; 2011 Dec 27; 5(12):9494-500. PubMed ID: 22032641
    [Abstract] [Full Text] [Related]

  • 11. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells.
    Liu Z, Li J, Sun ZH, Tai G, Lau SP, Yan F.
    ACS Nano; 2012 Jan 24; 6(1):810-8. PubMed ID: 22148872
    [Abstract] [Full Text] [Related]

  • 12. Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells.
    Genovese MP, Lightcap IV, Kamat PV.
    ACS Nano; 2012 Jan 24; 6(1):865-72. PubMed ID: 22147684
    [Abstract] [Full Text] [Related]

  • 13. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.
    Khurelbaatar Z, Hyung JH, Kim GS, Park NW, Shim KH, Lee SK.
    J Nanosci Nanotechnol; 2014 Jun 24; 14(6):4394-9. PubMed ID: 24738402
    [Abstract] [Full Text] [Related]

  • 14. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells.
    He Z, Guai G, Liu J, Guo C, Loo JS, Li CM, Tan TT.
    Nanoscale; 2011 Nov 24; 3(11):4613-6. PubMed ID: 22006266
    [Abstract] [Full Text] [Related]

  • 15. Thinnest two-dimensional nanomaterial-graphene for solar energy.
    Hu YH, Wang H, Hu B.
    ChemSusChem; 2010 Jul 19; 3(7):782-96. PubMed ID: 20544792
    [Abstract] [Full Text] [Related]

  • 16. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators.
    Kumar B, Lee KY, Park HK, Chae SJ, Lee YH, Kim SW.
    ACS Nano; 2011 May 24; 5(5):4197-204. PubMed ID: 21495657
    [Abstract] [Full Text] [Related]

  • 17. CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices.
    Rakshit T, Mondal SP, Manna I, Ray SK.
    ACS Appl Mater Interfaces; 2012 Nov 24; 4(11):6085-95. PubMed ID: 23082825
    [Abstract] [Full Text] [Related]

  • 18. Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries.
    Hu Z, Zhang X, Xie C, Wu C, Zhang X, Bian L, Wu Y, Wang L, Zhang Y, Jie J.
    Nanoscale; 2011 Nov 24; 3(11):4798-803. PubMed ID: 21952747
    [Abstract] [Full Text] [Related]

  • 19. Thiolated graphene--a new platform for anchoring CdSe quantum dots for hybrid heterostructures.
    Debgupta J, Pillai VK.
    Nanoscale; 2013 May 07; 5(9):3615-9. PubMed ID: 23519354
    [Abstract] [Full Text] [Related]

  • 20. CdS/CdSe-cosensitized TiO₂ photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method.
    Zhu G, Pan L, Xu T, Sun Z.
    ACS Appl Mater Interfaces; 2011 Aug 07; 3(8):3146-51. PubMed ID: 21744836
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.