These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 21361437

  • 1. Specification of absorbed-sound power in the ear canal: application to suppression of stimulus frequency otoacoustic emissions.
    Keefe DH, Schairer KS.
    J Acoust Soc Am; 2011 Feb; 129(2):779-91. PubMed ID: 21361437
    [Abstract] [Full Text] [Related]

  • 2. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.
    Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF.
    J Acoust Soc Am; 2017 Jan; 141(1):499. PubMed ID: 28147608
    [Abstract] [Full Text] [Related]

  • 3. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA, Reed CM, Robinson SR, Perez ZD.
    Ear Hear; 2018 Jan; 39(5):946-957. PubMed ID: 29470259
    [Abstract] [Full Text] [Related]

  • 4. Comparison of nine methods to estimate ear-canal stimulus levels.
    Souza NN, Dhar S, Neely ST, Siegel JH.
    J Acoust Soc Am; 2014 Oct; 136(4):1768-87. PubMed ID: 25324079
    [Abstract] [Full Text] [Related]

  • 5. Distortion-product otoacoustic-emission suppression tuning in human infants and adults using absorbed sound power.
    Keefe DH, Abdala C.
    J Acoust Soc Am; 2011 Apr; 129(4):EL108-13. PubMed ID: 21476616
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Compensating for ear-canal acoustics when measuring otoacoustic emissions.
    Charaziak KK, Shera CA.
    J Acoust Soc Am; 2017 Jan; 141(1):515. PubMed ID: 28147590
    [Abstract] [Full Text] [Related]

  • 11. Comparison between intensity and pressure as measures of sound level in the ear canal.
    Neely ST, Gorga MP.
    J Acoust Soc Am; 1998 Nov; 104(5):2925-34. PubMed ID: 9821338
    [Abstract] [Full Text] [Related]

  • 12. Intensimetric detection of distortion product otoacoustic emissions with ear canal calibration.
    Sisto R, Cerini L, Sanjust F, Moleti A.
    J Acoust Soc Am; 2017 Jul; 142(1):EL13. PubMed ID: 28764449
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA, Hu N.
    Ear Hear; 2011 Jul; 32(6):708-19. PubMed ID: 21617531
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure.
    Reinfeldt S, Stenfelt S, Håkansson B.
    Hear Res; 2013 May; 299():19-28. PubMed ID: 23422311
    [Abstract] [Full Text] [Related]

  • 17. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions.
    Puria S.
    J Acoust Soc Am; 2003 May; 113(5):2773-89. PubMed ID: 12765395
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Calibration of ear canals for audiometry at high frequencies.
    Stevens KN, Berkovitz R, Kidd G, Green DM.
    J Acoust Soc Am; 1987 Feb; 81(2):470-84. PubMed ID: 3558965
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.