These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


341 related items for PubMed ID: 21370851

  • 21. A mutational analysis of active site residues in trans-3-chloroacrylic acid dehalogenase.
    Poelarends GJ, Serrano H, Huddleston JP, Johnson WH, Whitman CP.
    FEBS Lett; 2013 Sep 02; 587(17):2842-50. PubMed ID: 23851010
    [Abstract] [Full Text] [Related]

  • 22. Inactivation of the phenylpyruvate tautomerase activity of macrophage migration inhibitory factor by 2-oxo-4-phenyl-3-butynoate.
    Golubkov PA, Johnson WH, Czerwinski RM, Person MD, Wang SC, Whitman CP, Hackert ML.
    Bioorg Chem; 2006 Aug 02; 34(4):183-99. PubMed ID: 16780921
    [Abstract] [Full Text] [Related]

  • 23. trans-3-Chloroacrylic acid dehalogenase from Pseudomonas pavonaceae 170 shares structural and mechanistic similarities with 4-oxalocrotonate tautomerase.
    Poelarends GJ, Saunier R, Janssen DB.
    J Bacteriol; 2001 Jul 02; 183(14):4269-77. PubMed ID: 11418568
    [Abstract] [Full Text] [Related]

  • 24. Kinetic and Structural Analysis of Two Linkers in the Tautomerase Superfamily: Analysis and Implications.
    Baas BJ, Medellin BP, LeVieux JA, Erwin K, Lancaster EB, Johnson WH, Kaoud TS, Moreno RY, de Ruijter M, Babbitt PC, Zhang YJ, Whitman CP.
    Biochemistry; 2021 Jun 08; 60(22):1776-1786. PubMed ID: 34019384
    [Abstract] [Full Text] [Related]

  • 25. The X-ray structure of trans-3-chloroacrylic acid dehalogenase reveals a novel hydration mechanism in the tautomerase superfamily.
    de Jong RM, Brugman W, Poelarends GJ, Whitman CP, Dijkstra BW.
    J Biol Chem; 2004 Mar 19; 279(12):11546-52. PubMed ID: 14701869
    [Abstract] [Full Text] [Related]

  • 26. Reaction of cis-3-chloroacrylic acid dehalogenase with an allene substrate, 2,3-butadienoate: hydration via an enamine.
    Schroeder GK, Johnson WH, Huddleston JP, Serrano H, Johnson KA, Whitman CP.
    J Am Chem Soc; 2012 Jan 11; 134(1):293-304. PubMed ID: 22129074
    [Abstract] [Full Text] [Related]

  • 27. A pre-steady state kinetic analysis of the αY60W mutant of trans-3-chloroacrylic acid dehalogenase: implications for the mechanism of the wild-type enzyme.
    Huddleston JP, Schroeder GK, Johnson KA, Whitman CP.
    Biochemistry; 2012 Nov 20; 51(46):9420-35. PubMed ID: 23110338
    [Abstract] [Full Text] [Related]

  • 28. Pre-steady-state kinetic analysis of cis-3-chloroacrylic acid dehalogenase: analysis and implications.
    Robertson BA, Schroeder GK, Jin Z, Johnson KA, Whitman CP.
    Biochemistry; 2009 Dec 15; 48(49):11737-44. PubMed ID: 19856961
    [Abstract] [Full Text] [Related]

  • 29. Reactions of Cg10062, a cis-3-Chloroacrylic Acid Dehalogenase Homologue, with Acetylene and Allene Substrates: Evidence for a Hydration-Dependent Decarboxylation.
    Huddleston JP, Johnson WH, Schroeder GK, Whitman CP.
    Biochemistry; 2015 May 19; 54(19):3009-23. PubMed ID: 25894805
    [Abstract] [Full Text] [Related]

  • 30. Kinetic and structural characterization of a heterohexamer 4-oxalocrotonate tautomerase from Chloroflexus aurantiacus J-10-fl: implications for functional and structural diversity in the tautomerase superfamily .
    Burks EA, Fleming CD, Mesecar AD, Whitman CP, Pegan SD.
    Biochemistry; 2010 Jun 22; 49(24):5016-27. PubMed ID: 20465238
    [Abstract] [Full Text] [Related]

  • 31. Resolution of the uncertainty in the kinetic mechanism for the trans-3-Chloroacrylic acid dehalogenase-catalyzed reaction.
    Huddleston JP, Wang SC, Johnson KA, Whitman CP.
    Arch Biochem Biophys; 2017 Jun 01; 623-624():9-19. PubMed ID: 28499743
    [Abstract] [Full Text] [Related]

  • 32. Evolution of enzymatic activities in the enolase superfamily: L-talarate/galactarate dehydratase from Salmonella typhimurium LT2.
    Yew WS, Fedorov AA, Fedorov EV, Almo SC, Gerlt JA.
    Biochemistry; 2007 Aug 21; 46(33):9564-77. PubMed ID: 17649980
    [Abstract] [Full Text] [Related]

  • 33. Crystal structures of native and inactivated cis-3-chloroacrylic acid dehalogenase: Implications for the catalytic and inactivation mechanisms.
    Guo Y, Serrano H, Johnson WH, Ernst S, Hackert ML, Whitman CP.
    Bioorg Chem; 2011 Feb 21; 39(1):1-9. PubMed ID: 21074239
    [Abstract] [Full Text] [Related]

  • 34. Structural and functional characterization of a macrophage migration inhibitory factor homologue from the marine cyanobacterium Prochlorococcus marinus .
    Wasiel AA, Rozeboom HJ, Hauke D, Baas BJ, Zandvoort E, Quax WJ, Thunnissen AM, Poelarends GJ.
    Biochemistry; 2010 Sep 07; 49(35):7572-81. PubMed ID: 20715791
    [Abstract] [Full Text] [Related]

  • 35. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ, Barends TR, Worm P, Akerboom J, Turnbull AP, Salmon L, van der Oost J.
    J Mol Biol; 2008 May 30; 379(2):357-71. PubMed ID: 18448118
    [Abstract] [Full Text] [Related]

  • 36. Structural and mechanistic analysis of trans-3-chloroacrylic acid dehalogenase activity.
    Pegan SD, Serrano H, Whitman CP, Mesecar AD.
    Acta Crystallogr D Biol Crystallogr; 2008 Dec 30; 64(Pt 12):1277-82. PubMed ID: 19018104
    [Abstract] [Full Text] [Related]

  • 37. Inactivation of 4-oxalocrotonate tautomerase by 2-oxo-3-pentynoate.
    Johnson WH, Czerwinski RM, Fitzgerald MC, Whitman CP.
    Biochemistry; 1997 Dec 16; 36(50):15724-32. PubMed ID: 9398301
    [Abstract] [Full Text] [Related]

  • 38. Crystal structure of 4-oxalocrotonate tautomerase inactivated by 2-oxo-3-pentynoate at 2.4 A resolution: analysis and implications for the mechanism of inactivation and catalysis.
    Taylor AB, Czerwinski RM, Johnson WH, Whitman CP, Hackert ML.
    Biochemistry; 1998 Oct 20; 37(42):14692-700. PubMed ID: 9778344
    [Abstract] [Full Text] [Related]

  • 39. Evolution of function in the crotonase superfamily: (3S)-methylglutaconyl-CoA hydratase from Pseudomonas putida.
    Wong BJ, Gerlt JA.
    Biochemistry; 2004 Apr 27; 43(16):4646-54. PubMed ID: 15096032
    [Abstract] [Full Text] [Related]

  • 40. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
    Yang G, Liu RQ, Taylor KL, Xiang H, Price J, Dunaway-Mariano D.
    Biochemistry; 1996 Aug 20; 35(33):10879-85. PubMed ID: 8718880
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.