These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
689 related items for PubMed ID: 21376391
1. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Liu H, Li X, Zhou G, Fan H, Fan Y. Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391 [Abstract] [Full Text] [Related]
2. Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold. Gong X, Liu H, Ding X, Liu M, Li X, Zheng L, Jia X, Zhou G, Zou Y, Li J, Huang X, Fan Y. Biomaterials; 2014 Jun; 35(17):4782-91. PubMed ID: 24642194 [Abstract] [Full Text] [Related]
3. [Progress and prospect of electrospun silk fibroin in construction of tissue-engineering scaffold]. Chen L, Zhu Y, Li Y, Liu Y, Yu J. Sheng Wu Gong Cheng Xue Bao; 2011 Jun; 27(6):831-7. PubMed ID: 22034811 [Abstract] [Full Text] [Related]
4. Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds. Liu H, Li X, Niu X, Zhou G, Li P, Fan Y. Biomacromolecules; 2011 Aug 08; 12(8):2914-24. PubMed ID: 21714569 [Abstract] [Full Text] [Related]
5. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Biomaterials; 2006 Jun 08; 27(16):3115-24. PubMed ID: 16458961 [Abstract] [Full Text] [Related]
6. In vitro evaluation of combined sulfated silk fibroin scaffolds for vascular cell growth. Liu H, Ding X, Bi Y, Gong X, Li X, Zhou G, Fan Y. Macromol Biosci; 2013 Jun 08; 13(6):755-66. PubMed ID: 23610045 [Abstract] [Full Text] [Related]
7. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L, Merkle HP. Biomaterials; 2009 Oct 08; 30(28):5068-76. PubMed ID: 19564040 [Abstract] [Full Text] [Related]
8. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. Wang S, Zhang Y, Wang H, Dong Z. Int J Biol Macromol; 2011 Mar 01; 48(2):345-53. PubMed ID: 21182858 [Abstract] [Full Text] [Related]
9. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB, Kundu SC. Biomaterials; 2009 Oct 01; 30(28):5019-30. PubMed ID: 19577292 [Abstract] [Full Text] [Related]
10. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S, Motta A, Migliaresi C, Kirkpatrick CJ. Biomaterials; 2010 Sep 01; 31(27):6959-67. PubMed ID: 20619788 [Abstract] [Full Text] [Related]
11. Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori. Wadbua P, Promdonkoy B, Maensiri S, Siri S. Int J Biol Macromol; 2010 Jun 01; 46(5):493-501. PubMed ID: 20338193 [Abstract] [Full Text] [Related]
12. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS, Ki CS, Kim JW, Lee KG, Kang SW, Kweon HY, Park YH. Biopolymers; 2012 May 01; 97(5):265-75. PubMed ID: 22169927 [Abstract] [Full Text] [Related]
13. Electrospun scaffolds from silk fibroin and their cellular compatibility. Zhang K, Mo X, Huang C, He C, Wang H. J Biomed Mater Res A; 2010 Jun 01; 93(3):976-83. PubMed ID: 19722283 [Abstract] [Full Text] [Related]
14. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Catto V, Farè S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanzi MC. Mater Sci Eng C Mater Biol Appl; 2015 Sep 01; 54():101-11. PubMed ID: 26046273 [Abstract] [Full Text] [Related]
15. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. Wei K, Li Y, Kim KO, Nakagawa Y, Kim BS, Abe K, Chen GQ, Kim IS. J Biomed Mater Res A; 2011 Jun 01; 97(3):272-80. PubMed ID: 21442728 [Abstract] [Full Text] [Related]
16. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Acta Biomater; 2012 Jan 01; 8(1):289-301. PubMed ID: 22019518 [Abstract] [Full Text] [Related]
17. [Recent progress on silk fibroin as tissue engineering biomaterials]. Wang H, Li M. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb 01; 22(2):192-5. PubMed ID: 18365617 [Abstract] [Full Text] [Related]
18. Electrospinning of silk fibroin and collagen for vascular tissue engineering. Zhou J, Cao C, Ma X, Lin J. Int J Biol Macromol; 2010 Nov 01; 47(4):514-9. PubMed ID: 20688101 [Abstract] [Full Text] [Related]
19. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Zhou J, Cao C, Ma X. Int J Biol Macromol; 2009 Dec 01; 45(5):504-10. PubMed ID: 19772871 [Abstract] [Full Text] [Related]
20. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM. Biomaterials; 2007 Feb 01; 28(6):1115-22. PubMed ID: 17112581 [Abstract] [Full Text] [Related] Page: [Next] [New Search]