These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


361 related items for PubMed ID: 21382505

  • 1. Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster.
    Mishra M, Sharma A, Negi MP, Dwivedi UN, Chowdhuri DK.
    Mutat Res; 2011 May 18; 722(1):44-51. PubMed ID: 21382505
    [Abstract] [Full Text] [Related]

  • 2. Genotoxicity of dichlorvos in strains of Drosophila melanogaster defective in DNA repair.
    Mishra M, Sharma A, Shukla AK, Kumar R, Dwivedi UN, Kar Chowdhuri D.
    Mutat Res Genet Toxicol Environ Mutagen; 2014 May 15; 766():35-41. PubMed ID: 24614193
    [Abstract] [Full Text] [Related]

  • 3. Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity.
    Sobol Z, Schiestl RH.
    Environ Mol Mutagen; 2012 Mar 15; 53(2):94-100. PubMed ID: 22020802
    [Abstract] [Full Text] [Related]

  • 4. Transcriptomic analysis provides insights on hexavalent chromium induced DNA double strand breaks and their possible repair in midgut cells of Drosophila melanogaster larvae.
    Mishra M, Sharma A, Shukla AK, Pragya P, Murthy RC, de Pomerai D, Dwivedi UN, Chowdhuri DK.
    Mutat Res; 2013 Mar 15; 747-748():28-39. PubMed ID: 23628323
    [Abstract] [Full Text] [Related]

  • 5. Chromium(VI) enhances (+/-)-anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-induced cytotoxicity and mutagenicity in mammalian cells through its inhibitory effect on nucleotide excision repair.
    Hu W, Feng Z, Tang MS.
    Biochemistry; 2004 Nov 09; 43(44):14282-9. PubMed ID: 15518579
    [Abstract] [Full Text] [Related]

  • 6. Validation and application of Drosophila melanogaster as an in vivo model for the detection of double strand breaks by neutral Comet assay.
    Sharma A, Shukla AK, Mishra M, Chowdhuri DK.
    Mutat Res; 2011 Apr 03; 721(2):142-6. PubMed ID: 21281740
    [Abstract] [Full Text] [Related]

  • 7. An evaluation of the mode of action framework for mutagenic carcinogens case study II: chromium (VI).
    McCarroll N, Keshava N, Chen J, Akerman G, Kligerman A, Rinde E.
    Environ Mol Mutagen; 2010 Mar 03; 51(2):89-111. PubMed ID: 19708067
    [Abstract] [Full Text] [Related]

  • 8. A comparison of the in vitro genotoxicity of tri- and hexavalent chromium.
    Blasiak J, Kowalik J.
    Mutat Res; 2000 Aug 21; 469(1):135-45. PubMed ID: 10946250
    [Abstract] [Full Text] [Related]

  • 9. Dme-miR-314-3p modulation in Cr(VI) exposed Drosophila affects DNA damage repair by targeting mus309.
    Chandra S, Khatoon R, Pandey A, Saini S, Vimal D, Singh P, Chowdhuri DK.
    J Hazard Mater; 2016 Mar 05; 304():360-9. PubMed ID: 26590872
    [Abstract] [Full Text] [Related]

  • 10. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms.
    O'Brien TJ, Ceryak S, Patierno SR.
    Mutat Res; 2003 Dec 10; 533(1-2):3-36. PubMed ID: 14643411
    [Abstract] [Full Text] [Related]

  • 11. Assessment of genotoxic potential of Cr(VI) in the mouse duodenum: an in silico comparison with mutagenic and nonmutagenic carcinogens across tissues.
    Thompson CM, Gregory Hixon J, Proctor DM, Haws LC, Suh M, Urban JD, Harris MA.
    Regul Toxicol Pharmacol; 2012 Oct 10; 64(1):68-76. PubMed ID: 22705708
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Genotoxic effects of nickel, trivalent and hexavalent chromium on the Eisenia fetida earthworm.
    Bigorgne E, Cossu-Leguille C, Bonnard M, Nahmani J.
    Chemosphere; 2010 Aug 10; 80(9):1109-12. PubMed ID: 20561668
    [Abstract] [Full Text] [Related]

  • 14. A role for Mus81 in the repair of chromium-induced DNA damage.
    Tamblyn L, Li E, Sarras H, Srikanth P, Hande MP, McPherson JP.
    Mutat Res; 2009 Jan 15; 660(1-2):57-65. PubMed ID: 19026666
    [Abstract] [Full Text] [Related]

  • 15. DNA damage induced by industrial solid waste leachates in Drosophila melanogaster: a mechanistic approach.
    Siddique HR, Sharma A, Gupta SC, Murthy RC, Dhawan A, Saxena DK, Chowdhuri DK.
    Environ Mol Mutagen; 2008 Apr 15; 49(3):206-16. PubMed ID: 18240159
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Waterborne and dietary hexavalent chromium exposure causes DNA-protein crosslink (DPX) formation in erythrocytes of largemouth bass (Micropterus salmoides).
    Kuykendall JR, Miller KL, Mellinger KN, Cain AV.
    Aquat Toxicol; 2006 Jun 10; 78(1):27-31. PubMed ID: 16672167
    [Abstract] [Full Text] [Related]

  • 18. Chromium-induced genotoxicity and interference in human lymphoblastoid cell (TK6) repair processes.
    El-Yamani N, Zúñiga L, Stoyanova E, Creus A, Marcos R.
    J Toxicol Environ Health A; 2011 Jun 10; 74(15-16):1030-9. PubMed ID: 21707427
    [Abstract] [Full Text] [Related]

  • 19. Genotoxicity of environmental agents assessed by the alkaline comet assay.
    Møller P.
    Basic Clin Pharmacol Toxicol; 2005 Jun 10; 96 Suppl 1():1-42. PubMed ID: 15859009
    [Abstract] [Full Text] [Related]

  • 20. Oxidative stress and genotoxic effects in gill and kidney of Anguilla anguilla L. exposed to chromium with or without pre-exposure to beta-naphthoflavone.
    Ahmad I, Maria VL, Oliveira M, Pacheco M, Santos MA.
    Mutat Res; 2006 Sep 19; 608(1):16-28. PubMed ID: 16784884
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.