These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 21383465

  • 41. Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry.
    Boshier PR, Marczin N, Hanna GB.
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1070-4. PubMed ID: 20335048
    [Abstract] [Full Text] [Related]

  • 42. Real-time selected ion flow tube mass spectrometry to assess short- and long-term variability in oral and nasal breath.
    Slingers G, Goossens R, Janssens H, Spruyt M, Goelen E, Vanden EM, Raes M, Koppen G.
    J Breath Res; 2020 Jul 03; 14(3):036006. PubMed ID: 32422613
    [Abstract] [Full Text] [Related]

  • 43. Real time analysis of breath volatiles using SIFT-MS in cigarette smoking.
    Senthilmohan ST, McEwan MJ, Wilson PF, Milligan DB, Freeman CG.
    Redox Rep; 2001 Jul 03; 6(3):185-7. PubMed ID: 11523595
    [Abstract] [Full Text] [Related]

  • 44. A new 'online' method to measure increased exhaled isoprene in end-stage renal failure.
    Davies S, Spanel P, Smith D.
    Nephrol Dial Transplant; 2001 Apr 03; 16(4):836-9. PubMed ID: 11274283
    [Abstract] [Full Text] [Related]

  • 45. Acetone, butanone, pentanone, hexanone and heptanone in the headspace of aqueous solution and urine studied by selected ion flow tube mass spectrometry.
    Pysanenko A, Wang T, Spanel P, Smith D.
    Rapid Commun Mass Spectrom; 2009 Apr 03; 23(8):1097-104. PubMed ID: 19280607
    [Abstract] [Full Text] [Related]

  • 46. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS.
    Španěl P, Smith D.
    Clin Mass Spectrom; 2020 Apr 03; 16():18-24. PubMed ID: 34820516
    [Abstract] [Full Text] [Related]

  • 47. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath.
    Spaněl P, Dryahina K, Smith D.
    J Breath Res; 2013 Mar 03; 7(1):017106. PubMed ID: 23445832
    [Abstract] [Full Text] [Related]

  • 48. Combined use of gas chromatography and selected ion flow tube mass spectrometry for absolute trace gas quantification.
    Kubista J, Spanel P, Dryahina K, Workman C, Smith D.
    Rapid Commun Mass Spectrom; 2006 Mar 03; 20(4):563-7. PubMed ID: 16419024
    [Abstract] [Full Text] [Related]

  • 49. Isoprene and acetone concentration profiles during exercise on an ergometer.
    King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, Miekisch W, Schubert J, Hinterhuber H, Amann A.
    J Breath Res; 2009 Jun 03; 3(2):027006. PubMed ID: 21383461
    [Abstract] [Full Text] [Related]

  • 50. In vitro SIFT-MS validation of a breath fractionating device using a model VOC and ventilation system.
    Seeley MJ, Hu WP, Scotter JM, Storer MK, Shaw GM.
    J Breath Res; 2009 Mar 03; 3(1):016001. PubMed ID: 21383449
    [Abstract] [Full Text] [Related]

  • 51. A preliminary investigation of exhaled breath from patients with celiac disease using selected ion flow tube mass spectrometry.
    Hryniuk A, Ross BM.
    J Gastrointestin Liver Dis; 2010 Mar 03; 19(1):15-20. PubMed ID: 20361069
    [Abstract] [Full Text] [Related]

  • 52. Increase of acetone and ammonia in urine headspace and breath during ovulation quantified using selected ion flow tube mass spectrometry.
    Diskin AM, Spanel P, Smith D.
    Physiol Meas; 2003 Feb 03; 24(1):191-9. PubMed ID: 12636196
    [Abstract] [Full Text] [Related]

  • 53. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath.
    Riess U, Tegtbur U, Fauck C, Fuhrmann F, Markewitz D, Salthammer T.
    Anal Chim Acta; 2010 Jun 11; 669(1-2):53-62. PubMed ID: 20510903
    [Abstract] [Full Text] [Related]

  • 54. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry.
    Shestivska V, Nemec A, Dřevínek P, Sovová K, Dryahina K, Spaněl P.
    Rapid Commun Mass Spectrom; 2011 Sep 15; 25(17):2459-67. PubMed ID: 21818806
    [Abstract] [Full Text] [Related]

  • 55. A sensor system for monitoring the simple gases hydrogen, carbon monoxide, hydrogen sulfide, ammonia and ethanol in exhaled breath.
    Costello BP, Ewen RJ, Ratcliffe NM.
    J Breath Res; 2008 Sep 15; 2(3):037011. PubMed ID: 21386172
    [Abstract] [Full Text] [Related]

  • 56. Determination of olive oil oxidative status by selected ion flow tube mass spectrometry.
    Davis BM, McEwan MJ.
    J Agric Food Chem; 2007 May 02; 55(9):3334-8. PubMed ID: 17407314
    [Abstract] [Full Text] [Related]

  • 57. The novel selected-ion flow tube approach to trace gas analysis of air and breath.
    Smith D, Spanel P.
    Rapid Commun Mass Spectrom; 1996 May 02; 10(10):1183-98. PubMed ID: 8759327
    [Abstract] [Full Text] [Related]

  • 58. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine.
    Spanĕl P, Smith D.
    Eur J Mass Spectrom (Chichester); 2007 May 02; 13(1):77-82. PubMed ID: 17878543
    [Abstract] [Full Text] [Related]

  • 59. The selected ion flow tube (SIFT)--a novel technique for biological monitoring.
    Spanĕl P, Rolfe P, Rajan B, Smith D.
    Ann Occup Hyg; 1996 Dec 02; 40(6):615-26. PubMed ID: 8958769
    [Abstract] [Full Text] [Related]

  • 60. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.
    Spesyvyi A, Smith D, Španěl P.
    Anal Chem; 2015 Dec 15; 87(24):12151-60. PubMed ID: 26583448
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.