These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 21385670

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.
    Normann RA, Dowden BR, Frankel MA, Wilder AM, Hiatt SD, Ledbetter NM, Warren DA, Clark GA.
    J Neural Eng; 2012 Apr; 9(2):026019. PubMed ID: 22414699
    [Abstract] [Full Text] [Related]

  • 4. Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation.
    Frankel MA, Mathews VJ, Clark GA, Normann RA, Meek SG.
    Front Neurosci; 2016 Apr; 10():414. PubMed ID: 27679557
    [Abstract] [Full Text] [Related]

  • 5. Selective motor unit recruitment via intrafascicular multielectrode stimulation.
    McDonnall D, Clark GA, Normann RA.
    Can J Physiol Pharmacol; 2004 Apr; 82(8-9):599-609. PubMed ID: 15523517
    [Abstract] [Full Text] [Related]

  • 6. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.
    Dowden BR, Wilder AM, Hiatt SD, Normann RA, Brown NA, Clark GA.
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):545-52. PubMed ID: 19696002
    [Abstract] [Full Text] [Related]

  • 7. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays.
    Dowden BR, Frankel MA, Normann RA, Clark GA.
    J Neural Eng; 2012 Feb; 9(1):016006. PubMed ID: 22173566
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Open-loop tracking performance of a limb joint controlled by random, periodic, and abrupt electrical stimulation inputs to the antagonist muscle pair.
    Zhou BH, Baratta RV, Solomonow M, Matsushita N, D'Ambrosia RD.
    IEEE Trans Biomed Eng; 1998 Apr; 45(4):511-9. PubMed ID: 9556968
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A simple model of force generation by skeletal muscle during dynamic isometric contractions.
    Bobet J, Stein RB.
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1010-6. PubMed ID: 9691575
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Noninvasive measurement of torque development in the rat foot: measurement setup and results from stimulation of the sciatic nerve with polyimide-based cuff electrodes.
    Stieglitz T, Schuettler M, Schneider A, Valderrama E, Navarro X.
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):427-37. PubMed ID: 14960120
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Selective control of muscle activation with a multipolar nerve cuff electrode.
    Veraart C, Grill WM, Mortimer JT.
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):640-53. PubMed ID: 8244425
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.