These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
199 related items for PubMed ID: 2138869
1. Involvement of a divalent cation in the binding of fructose 6-phosphate to Trypanosoma cruzi phosphofructokinase: kinetic and magnetic resonance studies. Urbina JA, Ysern X, Mildvan AS. Arch Biochem Biophys; 1990 Apr; 278(1):187-94. PubMed ID: 2138869 [Abstract] [Full Text] [Related]
2. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM, Lee HC, Peisach J, Mildvan AS. Biochemistry; 2002 Apr 09; 41(14):4655-68. PubMed ID: 11926828 [Abstract] [Full Text] [Related]
3. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Koren R, Mildvan S. Biochemistry; 1977 Jan 25; 16(2):241-9. PubMed ID: 189795 [Abstract] [Full Text] [Related]
4. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+. Conyers GB, Wu G, Bessman MJ, Mildvan AS. Biochemistry; 2000 Mar 07; 39(9):2347-54. PubMed ID: 10694402 [Abstract] [Full Text] [Related]
5. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis. Maggio ET, Kenyon GL, Mildvan AS, Hegeman GD. Biochemistry; 1975 Mar 25; 14(6):1131-9. PubMed ID: 164210 [Abstract] [Full Text] [Related]
6. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions. Gupta RK, Oesterling RM. Biochemistry; 1976 Jun 29; 15(13):2881-7. PubMed ID: 7293 [Abstract] [Full Text] [Related]
7. Dual divalent cation requirement of the MutT dGTPase. Kinetic and magnetic resonance studies of the metal and substrate complexes. Frick DN, Weber DJ, Gillespie JR, Bessman MJ, Mildvan AS. J Biol Chem; 1994 Jan 21; 269(3):1794-803. PubMed ID: 8294428 [Abstract] [Full Text] [Related]
8. Lanthanide pyrophosphates as substrates for the pyrophosphate-dependent phosphofructokinases from Propionibacterium freudenreichii and Phaseolus aureus: evidence for a second metal ion required for reaction. Bertagnolli BL, Cook PF. Biochemistry; 1994 Feb 22; 33(7):1663-7. PubMed ID: 8110768 [Abstract] [Full Text] [Related]
9. Isotope partitioning with Ascaris suum phosphofructokinase is consistent with an ordered kinetic mechanism. Gibson GE, Harris BG, Cook PF. Biochemistry; 1996 Apr 30; 35(17):5451-7. PubMed ID: 8611535 [Abstract] [Full Text] [Related]
10. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase. Grisham CM, Mildvan AS. J Supramol Struct; 1975 Apr 30; 3(3):304-13. PubMed ID: 171521 [Abstract] [Full Text] [Related]
11. Characterization of an adenylyl cyclase activity in particulate preparations from epimastigote forms of Trypanosoma cruzi. Da Silveira JF, Zingales B, Colli W. Biochim Biophys Acta; 1977 Apr 12; 481(2):722-33. PubMed ID: 15618 [Abstract] [Full Text] [Related]
12. The phosphofructokinase of Trypanosoma (Schizotrypanum) cruzi: purification and kinetic mechanism. Aguilar Z, Urbina JA. Mol Biochem Parasitol; 1986 Nov 12; 21(2):103-11. PubMed ID: 2946951 [Abstract] [Full Text] [Related]
13. Further kinetic characterization of the non-allosteric phosphofructokinase from Escherichia coli K-12. Ewings KN, Doelle HW. Biochim Biophys Acta; 1980 Sep 09; 615(1):103-12. PubMed ID: 6448638 [Abstract] [Full Text] [Related]
14. Regulation of energy metabolism in Trypanosoma (Schizotrypanum) cruzi epimastigotes. I. Hexokinase and phosphofructokinase. Urbina JA, Crespo A. Mol Biochem Parasitol; 1984 Apr 09; 11():225-39. PubMed ID: 6235452 [Abstract] [Full Text] [Related]
15. The roles of magnesium ions in the reaction catalysed by phosphofructokinase from Trypanosoma brucei. Cronin CN, Tipton KF. Biochem J; 1987 Oct 01; 247(1):41-6. PubMed ID: 2961325 [Abstract] [Full Text] [Related]
16. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+. Hsu RY, Mildvan AS, Chang G, Fung C. J Biol Chem; 1976 Nov 10; 251(21):6574-83. PubMed ID: 988026 [Abstract] [Full Text] [Related]
17. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation. Brown DA, Cook RA. Biochemistry; 1981 Apr 28; 20(9):2503-12. PubMed ID: 7016178 [Abstract] [Full Text] [Related]
18. The effect of monovalent and divalent cations on the activity of Streptococcus lactis C10 pyruvate kinase. Crow VL, Pritchard GG. Biochim Biophys Acta; 1977 Mar 15; 481(1):105-14. PubMed ID: 14688 [Abstract] [Full Text] [Related]
19. Electron spin echo modulation and nuclear relaxation studies of staphylococcal nuclease and its metal-coordinating mutants. Serpersu EH, McCracken J, Peisach J, Mildvan AS. Biochemistry; 1988 Oct 18; 27(21):8034-44. PubMed ID: 2852950 [Abstract] [Full Text] [Related]
20. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex. Pry TA, Hsu RY. Biochemistry; 1980 Mar 04; 19(5):951-62. PubMed ID: 7356971 [Abstract] [Full Text] [Related] Page: [Next] [New Search]