These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
373 related items for PubMed ID: 21390528
1. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Guzun R, Timohhina N, Tepp K, Gonzalez-Granillo M, Shevchuk I, Chekulayev V, Kuznetsov AV, Kaambre T, Saks VA. Amino Acids; 2011 May; 40(5):1333-48. PubMed ID: 21390528 [Abstract] [Full Text] [Related]
2. Creatine phosphate: pharmacological and clinical perspectives. Strumia E, Pelliccia F, D'Ambrosio G. Adv Ther; 2012 Feb; 29(2):99-123. PubMed ID: 22297802 [Abstract] [Full Text] [Related]
3. Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome. Saks V, Guzun R, Timohhina N, Tepp K, Varikmaa M, Monge C, Beraud N, Kaambre T, Kuznetsov A, Kadaja L, Eimre M, Seppet E. Biochim Biophys Acta; 2010 Feb; 1797(6-7):678-97. PubMed ID: 20096261 [Abstract] [Full Text] [Related]
4. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model. Dos Santos P, Aliev MK, Diolez P, Duclos F, Besse P, Bonoron-Adèle S, Sikk P, Canioni P, Saks VA. J Mol Cell Cardiol; 2000 Sep; 32(9):1703-34. PubMed ID: 10966833 [Abstract] [Full Text] [Related]
5. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK, van Dorsten FA, Nederhoff MG, van Echteld CJ, Veksler V, Nicolay K, Saks VA. Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [Abstract] [Full Text] [Related]
6. Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes - experimental study. Tepp K, Timohhina N, Chekulayev V, Shevchuk I, Kaambre T, Saks V. Acta Biochim Pol; 2010 Jul; 57(4):421-30. PubMed ID: 21170421 [Abstract] [Full Text] [Related]
7. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Aliev MK, Saks VA. Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806 [Abstract] [Full Text] [Related]
8. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Jacobus WE. Annu Rev Physiol; 1985 Jul; 47():707-25. PubMed ID: 3888084 [Abstract] [Full Text] [Related]
9. Isozymes of creatine kinase in mammalian cell cultures. Van Brussel E, Yang JJ, Seraydarian MW. J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402 [Abstract] [Full Text] [Related]
10. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. Ydfors M, Hughes MC, Laham R, Schlattner U, Norrbom J, Perry CG. J Physiol; 2016 Jun 01; 594(11):3127-40. PubMed ID: 26631938 [Abstract] [Full Text] [Related]
11. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Saks VA, Kongas O, Vendelin M, Kay L. Acta Physiol Scand; 2000 Apr 01; 168(4):635-41. PubMed ID: 10759600 [Abstract] [Full Text] [Related]
12. The role of phosphocreatine and ATP in contraction of normal and ischemic heart. Kupriyanov VV, Lakomkin VL, Steinschneider AYa, Novikova NA, Severina MYu, Kapelko VI, Saks VA. Biomed Biochim Acta; 1987 Apr 01; 46(8-9):S493-8. PubMed ID: 3435507 [Abstract] [Full Text] [Related]
13. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. in 't Zandt HJ, de Groof AJ, Renema WK, Oerlemans FT, Klomp DW, Wieringa B, Heerschap A. J Physiol; 2003 May 01; 548(Pt 3):847-58. PubMed ID: 12640020 [Abstract] [Full Text] [Related]
14. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D. EMBO J; 1998 Mar 16; 17(6):1688-99. PubMed ID: 9501090 [Abstract] [Full Text] [Related]
15. Intracellular Energetic Units regulate metabolism in cardiac cells. Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Karu-Varikmaa M, Kaambre T, Dos Santos P, Boucher F, Guzun R. J Mol Cell Cardiol; 2012 Feb 16; 52(2):419-36. PubMed ID: 21816155 [Abstract] [Full Text] [Related]
16. [Creatine kinase isoenzymes--characterization and functions in cell]. Grzyb K, Skorkowski EF. Postepy Biochem; 2008 Feb 16; 54(3):274-83. PubMed ID: 19112826 [Abstract] [Full Text] [Related]
17. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK. Mol Cell Biochem; 1998 Jul 16; 184(1-2):249-89. PubMed ID: 9746325 [Abstract] [Full Text] [Related]
18. The creatine kinase system and cardiomyopathy. Khuchua ZA, Vasiljeva EV, Clark JF, Korchazhkina OV, Branishte T, Kapelko VI, Kuznetsov AV, Ventura-Clapier R, Steinschneider AYa, Lakomkin VL. Am J Cardiovasc Pathol; 1992 Jul 16; 4(3):223-34. PubMed ID: 1298299 [Abstract] [Full Text] [Related]
19. Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channelling in muscle cells. Saks V, Dos Santos P, Gellerich FN, Diolez P. Mol Cell Biochem; 1998 Jul 16; 184(1-2):291-307. PubMed ID: 9746326 [Abstract] [Full Text] [Related]
20. Is there the creatine kinase equilibrium in working heart cells? Saks VA, Aliev MK. Biochem Biophys Res Commun; 1996 Oct 14; 227(2):360-7. PubMed ID: 8878521 [Abstract] [Full Text] [Related] Page: [Next] [New Search]