These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


465 related items for PubMed ID: 21397332

  • 21. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials.
    Sun TY, Gottschalk F, Hungerbühler K, Nowack B.
    Environ Pollut; 2014 Feb; 185():69-76. PubMed ID: 24220022
    [Abstract] [Full Text] [Related]

  • 22. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA, Zhou AL, Kikandi S, Du N, Wang Q, Varner K.
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [Abstract] [Full Text] [Related]

  • 23. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies.
    Grieger KD, Hansen SF, Sørensen PB, Baun A.
    Sci Total Environ; 2011 Sep 01; 409(19):4109-24. PubMed ID: 21737121
    [Abstract] [Full Text] [Related]

  • 24. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY.
    Food Chem Toxicol; 2015 Nov 01; 85():120-6. PubMed ID: 26111809
    [Abstract] [Full Text] [Related]

  • 25. Estimating production data for five engineered nanomaterials as a basis for exposure assessment.
    Hendren CO, Mesnard X, Dröge J, Wiesner MR.
    Environ Sci Technol; 2011 Apr 01; 45(7):2562-9. PubMed ID: 21391627
    [Abstract] [Full Text] [Related]

  • 26. The release of engineered nanomaterials to the environment.
    Gottschalk F, Nowack B.
    J Environ Monit; 2011 May 01; 13(5):1145-55. PubMed ID: 21387066
    [Abstract] [Full Text] [Related]

  • 27. Advancing risk assessment of engineered nanomaterials: application of computational approaches.
    Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J.
    Adv Drug Deliv Rev; 2012 Dec 01; 64(15):1663-93. PubMed ID: 22664229
    [Abstract] [Full Text] [Related]

  • 28. Flows of engineered nanomaterials through the recycling process in Switzerland.
    Caballero-Guzman A, Sun T, Nowack B.
    Waste Manag; 2015 Feb 01; 36():33-43. PubMed ID: 25524750
    [Abstract] [Full Text] [Related]

  • 29. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles.
    Hund-Rinke K, Baun A, Cupi D, Fernandes TF, Handy R, Kinross JH, Navas JM, Peijnenburg W, Schlich K, Shaw BJ, Scott-Fordsmand JJ.
    Nanotoxicology; 2016 Dec 01; 10(10):1442-1447. PubMed ID: 27592624
    [Abstract] [Full Text] [Related]

  • 30. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions.
    Thomas T, Bahadori T, Savage N, Thomas K.
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009 Dec 01; 1(4):426-33. PubMed ID: 20049808
    [Abstract] [Full Text] [Related]

  • 31. Presence in, and release of, nanomaterials from consumer products.
    Yang Y, Westerhoff P.
    Adv Exp Med Biol; 2014 Dec 01; 811():1-17. PubMed ID: 24683024
    [Abstract] [Full Text] [Related]

  • 32. Ecotoxicity and analysis of nanomaterials in the aquatic environment.
    Farré M, Gajda-Schrantz K, Kantiani L, Barceló D.
    Anal Bioanal Chem; 2009 Jan 01; 393(1):81-95. PubMed ID: 18987850
    [Abstract] [Full Text] [Related]

  • 33. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials.
    O'Brien N, Cummins E.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jan 01; 45(8):992-1007. PubMed ID: 20486008
    [Abstract] [Full Text] [Related]

  • 34. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility.
    Brenner SA, Neu-Baker NM, Eastlake AC, Beaucham CC, Geraci CL.
    J Occup Environ Hyg; 2016 Nov 01; 13(11):871-80. PubMed ID: 27171535
    [Abstract] [Full Text] [Related]

  • 35. Integrated testing and intelligent assessment-new challenges under REACH.
    Ahlers J, Stock F, Werschkun B.
    Environ Sci Pollut Res Int; 2008 Oct 01; 15(7):565-72. PubMed ID: 18818964
    [Abstract] [Full Text] [Related]

  • 36. Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials.
    Som C, Nowack B, Krug HF, Wick P.
    Acc Chem Res; 2013 Mar 19; 46(3):863-72. PubMed ID: 23110540
    [Abstract] [Full Text] [Related]

  • 37. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review.
    Petersen EJ, Henry TB.
    Environ Toxicol Chem; 2012 Jan 19; 31(1):60-72. PubMed ID: 21994158
    [Abstract] [Full Text] [Related]

  • 38. Risks and implications for health and the environment associated with products and waste containing nanomaterials: regulatory and management issues in the European framework.
    Zamengo L, Nasello M, Branchi B, Bracalente G, Vergari W, Bertocco C, Costernaro A.
    G Ital Med Lav Ergon; 2020 Mar 19; 42(1):5-10. PubMed ID: 32614527
    [Abstract] [Full Text] [Related]

  • 39. Risk management strategy to increase the safety of workers in the nanomaterials industry.
    Ling MP, Lin WC, Liu CC, Huang YS, Chueh MJ, Shih TS.
    J Hazard Mater; 2012 Aug 30; 229-230():83-93. PubMed ID: 22727485
    [Abstract] [Full Text] [Related]

  • 40. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B.
    Environ Sci Technol; 2009 Dec 15; 43(24):9216-22. PubMed ID: 20000512
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.