These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
275 related items for PubMed ID: 21401526
1. Ciliary beat co-ordination by calcium. Schmid A, Salathe M. Biol Cell; 2011 Apr; 103(4):159-69. PubMed ID: 21401526 [Abstract] [Full Text] [Related]
2. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Braiman A, Priel Z. Respir Physiol Neurobiol; 2008 Nov 30; 163(1-3):202-7. PubMed ID: 18586580 [Abstract] [Full Text] [Related]
3. Luminal fluid tonicity regulates airway ciliary beating by altering membrane stretch and intracellular calcium. Horváth G, Sorscher EJ. Cell Motil Cytoskeleton; 2008 Jun 30; 65(6):469-75. PubMed ID: 18435452 [Abstract] [Full Text] [Related]
6. Acetylcholine-induced Ciliary Beat of the Human Nasal Mucosa Is Regulated by the Pannexin-1 Channel and Purinergic P2X Receptor. Do BH, Ohbuchi T, Wakasugi T, Koizumi H, Yokoyama M, Hohchi N, Suzuki H. Am J Rhinol Allergy; 2018 Jul 30; 32(4):217-227. PubMed ID: 29676177 [Abstract] [Full Text] [Related]
7. Extracellular sodium regulates airway ciliary motility by inhibiting a P2X receptor. Ma W, Korngreen A, Uzlaner N, Priel Z, Silberberg SD. Nature; 1999 Aug 26; 400(6747):894-7. PubMed ID: 10476971 [Abstract] [Full Text] [Related]
9. The Endoplasmic Reticulum Resident Protein AGR3. Required for Regulation of Ciliary Beat Frequency in the Airway. Bonser LR, Schroeder BW, Ostrin LA, Baumlin N, Olson JL, Salathe M, Erle DJ. Am J Respir Cell Mol Biol; 2015 Oct 26; 53(4):536-43. PubMed ID: 25751668 [Abstract] [Full Text] [Related]
10. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis. Bottier M, Blanchon S, Pelle G, Bequignon E, Isabey D, Coste A, Escudier E, Grotberg JB, Papon JF, Filoche M, Louis B. PLoS Comput Biol; 2017 Jul 26; 13(7):e1005605. PubMed ID: 28708889 [Abstract] [Full Text] [Related]
15. Mechanisms of cilia-driven transport in the airways in the absence of mucus. Bermbach S, Weinhold K, Roeder T, Petersen F, Kugler C, Goldmann T, Rupp J, König P. Am J Respir Cell Mol Biol; 2014 Jul 26; 51(1):56-67. PubMed ID: 24467665 [Abstract] [Full Text] [Related]
16. Hydrodynamic model of directional ciliary-beat organization in human airways. Gsell S, Loiseau E, D'Ortona U, Viallat A, Favier J. Sci Rep; 2020 May 21; 10(1):8405. PubMed ID: 32439925 [Abstract] [Full Text] [Related]
18. Molecular modulation of airway epithelial ciliary response to sneezing. Zhao KQ, Cowan AT, Lee RJ, Goldstein N, Droguett K, Chen B, Zheng C, Villalon M, Palmer JN, Kreindler JL, Cohen NA. FASEB J; 2012 Aug 21; 26(8):3178-87. PubMed ID: 22516297 [Abstract] [Full Text] [Related]
19. Calmodulin and protein kinases A/G mediate ciliary beat response in the human nasal epithelium. Do BH, Nguyen TN, Baba R, Ohbuchi T, Ohkubo JI, Kitamura T, Wakasugi T, Morimoto H, Suzuki H. Int Forum Allergy Rhinol; 2019 Nov 21; 9(11):1352-1359. PubMed ID: 31574592 [Abstract] [Full Text] [Related]
20. Variability in tracheal mucociliary transport is not controlled by beating cilia in lambs in vivo during ventilation with humidified and nonhumidified air. Kelly SJ, Brodecky V, Skuza EM, Berger PJ, Tatkov S. Am J Physiol Lung Cell Mol Physiol; 2021 Apr 01; 320(4):L473-L485. PubMed ID: 33438520 [Abstract] [Full Text] [Related] Page: [Next] [New Search]