These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ethanol-induced cardiac hypertrophy: correlation between development and the excretion of adrenal catecholamines. Adams MA, Hirst M. Pharmacol Biochem Behav; 1986 Jan; 24(1):33-8. PubMed ID: 2935884 [Abstract] [Full Text] [Related]
3. Adrenal and urinary catecholamines during and after severe ethanol intoxication in rats: a profile of changes. Adams MA, Hirst M. Pharmacol Biochem Behav; 1984 Jul; 21(1):125-31. PubMed ID: 6540450 [Abstract] [Full Text] [Related]
4. The influence of adrenal medullectomy on the development of ethanol-induced cardiac hypertrophy. Adams MA, Hirst M. Can J Physiol Pharmacol; 1986 May; 64(5):592-6. PubMed ID: 2942233 [Abstract] [Full Text] [Related]
5. Lack of cardiac alpha 1-adrenoceptor involvement in ethanol-induced cardiac hypertrophy. Adams MA, Hirst M. Can J Physiol Pharmacol; 1989 Mar; 67(3):240-5. PubMed ID: 2545320 [Abstract] [Full Text] [Related]
10. [Acetaldehyde in the cardiotoxic mechanism of action of alcohol: effects on cardiac and adrenal catecholamines]. Bozhko GKh, Boĭko TP. Kardiologiia; 1991 Sep; 31(9):73-5. PubMed ID: 1753625 [Abstract] [Full Text] [Related]
11. Prevention of exercise-induced cardiac hypertrophy in rats by chemical sympathectomy (guanethidine treatment). Ostman-Smith I. Neuroscience; 1976 Dec; 1(6):497-507. PubMed ID: 11370243 [Abstract] [Full Text] [Related]
12. Effects of 2-deoxy-D-glucose on the cardiac sympathetic nerves and the adrenal medulla in the rat: further evidence for a dissociation of sympathetic nervous system and adrenal medullary responses. Rappaport EB, Young JB, Landsberg L. Endocrinology; 1982 Feb; 110(2):650-6. PubMed ID: 7056216 [Abstract] [Full Text] [Related]
13. The catecholamine content of the perinatal rat adrenal gland. Coulter CL, McMillen IC, Browne CA. Gen Pharmacol; 1988 Feb; 19(6):825-8. PubMed ID: 3229623 [Abstract] [Full Text] [Related]
14. Comparison of pharmacodynamics between carvedilol and metoprolol in rats with isoproterenol-induced cardiac hypertrophy: effects of carvedilol enantiomers. Hanada K, Asari K, Saito M, Kawana J, Mita M, Ogata H. Eur J Pharmacol; 2008 Jul 28; 589(1-3):194-200. PubMed ID: 18534575 [Abstract] [Full Text] [Related]
15. Selective beta(1)-blockade improves cardiac bioenergetics and function and decreases neuroendocrine activation in rats during early postinfarct remodeling. Omerovic E, Bollano E, Mobini R, Madhu B, Kujacic V, Soussi B, Hjalmarson A, Waagstein F. Biochem Biophys Res Commun; 2001 Feb 23; 281(2):491-8. PubMed ID: 11181074 [Abstract] [Full Text] [Related]
16. Significance of myocardial alpha- and beta-adrenoceptors in catecholamine-induced cardiac hypertrophy. Zierhut W, Zimmer HG. Circ Res; 1989 Nov 23; 65(5):1417-25. PubMed ID: 2572358 [Abstract] [Full Text] [Related]
17. Cardiac noradrenaline turnover and urinary catecholamine excretion in trained and untrained rats during rest and exercise. Ostman I, Sjöstrand NO, Swedin G. Acta Physiol Scand; 1972 Nov 23; 86(3):299-308. PubMed ID: 4638696 [No Abstract] [Full Text] [Related]
19. [The action of teturam and acetaldehyde on the tissue catecholamines of rats]. Bozhko GKh, Boĭko TP, Voloshin PV. Farmakol Toksikol; 1991 Sep 15; 54(6):37-9. PubMed ID: 1804693 [Abstract] [Full Text] [Related]
20. Effect of heavy physical training on the catecholamine content of the heart and adrenals of the guinea pig. Ostman I, Sjöstrand NO. Experientia; 1971 Mar 15; 27(3):270-1. PubMed ID: 4251071 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]