These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
360 related items for PubMed ID: 21405141
21. Dry film refractive index as an important parameter for ultra-low fouling surface coatings. Brault ND, Sundaram HS, Li Y, Huang CJ, Yu Q, Jiang S. Biomacromolecules; 2012 Mar 12; 13(3):589-93. PubMed ID: 22352876 [Abstract] [Full Text] [Related]
22. Cell fouling resistance of polymer brushes grafted from ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length. Fan X, Lin L, Messersmith PB. Biomacromolecules; 2006 Aug 12; 7(8):2443-8. PubMed ID: 16903694 [Abstract] [Full Text] [Related]
23. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. Li W, Liu Q, Liu L. J Biomater Sci Polym Ed; 2014 Aug 12; 25(14-15):1730-42. PubMed ID: 25136859 [Abstract] [Full Text] [Related]
24. Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. Hadjicharalambous C, Flouraki C, Narain R, Chatzinikolaidou M, Vamvakaki M. J Mater Sci Mater Med; 2018 Jun 26; 29(7):98. PubMed ID: 29946888 [Abstract] [Full Text] [Related]
25. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats. Kim SE, Zhang C, Advincula AA, Baer E, Pokorski JK. ACS Appl Mater Interfaces; 2016 Apr 13; 8(14):8928-38. PubMed ID: 27043205 [Abstract] [Full Text] [Related]
26. Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property. Zhang D, Ren B, Zhang Y, Liu Y, Chen H, Xiao S, Chang Y, Yang J, Zheng J. J Colloid Interface Sci; 2020 Oct 15; 578():242-253. PubMed ID: 32531554 [Abstract] [Full Text] [Related]
27. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY. Langmuir; 2010 Mar 02; 26(5):3522-30. PubMed ID: 19947616 [Abstract] [Full Text] [Related]
28. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Xing CM, Meng FN, Quan M, Ding K, Dang Y, Gong YK. Acta Biomater; 2017 Sep 01; 59():129-138. PubMed ID: 28663144 [Abstract] [Full Text] [Related]
29. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control. Jhong JF, Sin MC, Kung HH, Chinnathambi A, Alharbi SA, Chang Y. J Biomater Sci Polym Ed; 2014 Sep 01; 25(14-15):1558-72. PubMed ID: 24894872 [Abstract] [Full Text] [Related]
30. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Guo S, Jańczewski D, Zhu X, Quintana R, He T, Neoh KG. J Colloid Interface Sci; 2015 Aug 15; 452():43-53. PubMed ID: 25913777 [Abstract] [Full Text] [Related]
38. Facile synthesis of free-standing polymer brush films based on a colorless polydopamine thin layer. Kohri M, Shinoda Y, Kohma H, Nannichi Y, Yamauchi M, Yagai S, Kojima T, Taniguchi T, Kishikawa K. Macromol Rapid Commun; 2013 Aug 15; 34(15):1220-4. PubMed ID: 23908127 [Abstract] [Full Text] [Related]