These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


488 related items for PubMed ID: 214146

  • 1. Change of coupling system of receptor-adenylate cyclase induced by epinephrine and GTP in plasma membranes of rat liver.
    Okamura N, Terayama H.
    Biochim Biophys Acta; 1978 Nov 15; 544(1):113-27. PubMed ID: 214146
    [Abstract] [Full Text] [Related]

  • 2. Comparison of the epinephrine-mediated activation of adenylate cyclase in plasma membranes from liver and ascites hepatomas of rats.
    Okamura N, Terayama H.
    Biochim Biophys Acta; 1976 Dec 02; 455(2):297-314. PubMed ID: 187240
    [Abstract] [Full Text] [Related]

  • 3. In vitro characterization of skeletal muscle beta-adrenergic receptors coupled to adenylate cyclase.
    Reddy NB, Engel WK.
    Biochim Biophys Acta; 1979 Jul 04; 585(3):343-59. PubMed ID: 226166
    [Abstract] [Full Text] [Related]

  • 4. Uncoupled beta-adrenergic receptors and adenylate cyclase can be recoupled by a GTP-dependent cytosolic factor.
    Pecker F, Hanoune J.
    FEBS Lett; 1977 Nov 01; 83(1):93-8. PubMed ID: 200491
    [No Abstract] [Full Text] [Related]

  • 5. Prostaglandin receptor-adenylate cyclase system in plasma membranes of rat liver and ascites hepatomas, and the effect of GTP upon it.
    Okamura N, Terayama H.
    Biochim Biophys Acta; 1977 Feb 14; 465(1):54-67. PubMed ID: 189813
    [Abstract] [Full Text] [Related]

  • 6. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides.
    Lefkowitz RJ, Mullikin D, Caron MG.
    J Biol Chem; 1976 Aug 10; 251(15):4686-92. PubMed ID: 947904
    [Abstract] [Full Text] [Related]

  • 7. Evidence for receptor-regulated phosphotransfer reactions involved in activation of the adenylate cyclase inhibitory G protein in human platelet membranes.
    Jakobs KH, Wieland T.
    Eur J Biochem; 1989 Jul 15; 183(1):115-21. PubMed ID: 2502397
    [Abstract] [Full Text] [Related]

  • 8. Regulation of adrenergic stimulation of hepatic adenylate cyclase by divalent cations.
    Jackowski MM, Johnson RA, Exton JH.
    Biochim Biophys Acta; 1982 Jan 12; 714(1):74-83. PubMed ID: 6275906
    [Abstract] [Full Text] [Related]

  • 9. Beta-Adrenergic receptors and catecholamine-sensitive adenylate cyclase of the human placenta.
    Whitsett JA, Johnson CL, Noguchi A, Darovec-Beckerman C, Costello M.
    J Clin Endocrinol Metab; 1980 Jan 12; 50(1):27-32. PubMed ID: 6243131
    [Abstract] [Full Text] [Related]

  • 10. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells.
    Tallman JF, Smith CC, Henneberry RC.
    Biochim Biophys Acta; 1978 Jul 03; 541(3):288-300. PubMed ID: 208639
    [Abstract] [Full Text] [Related]

  • 11. Hepatic adenylate cyclase. Development-dependent coupling to the beta-adrenergic receptor in the neonate.
    Kawai Y, Graham SM, Whitsel C, Arinze IJ.
    J Biol Chem; 1985 Sep 05; 260(19):10826-32. PubMed ID: 2993291
    [Abstract] [Full Text] [Related]

  • 12. The epinephrine-sensitive adenylate cyclase of rat liver plasma membranes. Role of guanyl nucleotides.
    Hanoune J, Lacombe ML, Pecker F.
    J Biol Chem; 1975 Jun 25; 250(12):4569-74. PubMed ID: 1141221
    [Abstract] [Full Text] [Related]

  • 13. (+/-)-[3H]Epinephrine and (-)[3H]dihydroalprenolol binding to beta1- and beta2-noradrenergic receptors in brain, heart, and lung membranes.
    U'Prichard DC, Bylund DB, Snyder SH.
    J Biol Chem; 1978 Jul 25; 253(14):5090-102. PubMed ID: 209026
    [Abstract] [Full Text] [Related]

  • 14. Activation of adenylate cyclase in bovine corpus-luteum membranes by human choriogonadotropin, guanine nucleotides and NaF.
    Lydon NB, Young JL, Stansfield DA.
    Biochem J; 1981 Sep 15; 198(3):631-8. PubMed ID: 7326028
    [Abstract] [Full Text] [Related]

  • 15. Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3-H] alprenolol.
    Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ.
    J Biol Chem; 1975 Jul 10; 250(13):4869-76. PubMed ID: 238972
    [Abstract] [Full Text] [Related]

  • 16. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase.
    Houslay MD, Dipple I, Elliott KR.
    Biochem J; 1980 Mar 15; 186(3):649-58. PubMed ID: 6249258
    [Abstract] [Full Text] [Related]

  • 17. Biochemical evidence for the dual action of labetalol on alpha- and beta-adrenoceptors.
    Aggerbeck M, Guellaen G, Hanoune J.
    Br J Pharmacol; 1978 Apr 15; 62(4):543-8. PubMed ID: 26446
    [Abstract] [Full Text] [Related]

  • 18. Adipocyte beta-adrenergic receptors. Identification and subcellular localization by (-)-[3H]dihydroalprenolol binding.
    Williams LT, Jarett L, Lefkowitz RJ.
    J Biol Chem; 1976 May 25; 251(10):3096-104. PubMed ID: 942608
    [Abstract] [Full Text] [Related]

  • 19. Use of (-)-[3H]dihydroalprenolol to study beta adrenergic receptor-adenylate cyclase coupling in C6 glioma cells: role of 5'-guanylylimidodiphosphate.
    Lucas M, Bockaert J.
    Mol Pharmacol; 1977 Mar 25; 13(2):314-29. PubMed ID: 192993
    [No Abstract] [Full Text] [Related]

  • 20. Alterations in the properties of beta-adrenergic receptors of myocardial membranes in aging: impairments in agonist-receptor interactions and guanine nucleotide regulation accompany diminished catecholamine-responsiveness of adenylate cyclase.
    Narayanan N, Derby JA.
    Mech Ageing Dev; 1982 Jun 25; 19(2):127-39. PubMed ID: 6287123
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.