These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 21417313

  • 1. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities.
    Sirk TW, Friedman M, Brown EF.
    J Agric Food Chem; 2011 Apr 27; 59(8):3780-7. PubMed ID: 21417313
    [Abstract] [Full Text] [Related]

  • 2. Molecular binding of catechins to biomembranes: relationship to biological activity.
    Sirk TW, Brown EF, Friedman M, Sum AK.
    J Agric Food Chem; 2009 Aug 12; 57(15):6720-8. PubMed ID: 19572638
    [Abstract] [Full Text] [Related]

  • 3. Molecular insights into the interactions of theaflavin and epicatechin with different lipid bilayer membranes by molecular dynamics simulation.
    Nie RZ, Luo HM, Chen JY, Sun LH, Wang ZB, Zhang ZP, Bao YR.
    Chem Phys Lipids; 2024 Aug 12; 262():105405. PubMed ID: 38795837
    [Abstract] [Full Text] [Related]

  • 4. Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles.
    Vermeer MA, Mulder TP, Molhuizen HO.
    J Agric Food Chem; 2008 Dec 24; 56(24):12031-6. PubMed ID: 19049290
    [Abstract] [Full Text] [Related]

  • 5. Diverse inhibition of plasminogen activator inhibitor type 1 by theaflavins of black tea.
    Jankun J, Skotnicka M, Łysiak-Szydłowska W, Al-Senaidy A, Skrzypczak-Jankun E.
    Int J Mol Med; 2011 Apr 24; 27(4):525-9. PubMed ID: 21308350
    [Abstract] [Full Text] [Related]

  • 6. Theaflavin-3-gallate and theaflavin-3'-gallate, polyphenols in black tea with prooxidant properties.
    Babich H, Gottesman RT, Liebling EJ, Schuck AG.
    Basic Clin Pharmacol Toxicol; 2008 Jul 24; 103(1):66-74. PubMed ID: 18346048
    [Abstract] [Full Text] [Related]

  • 7. The human bitter taste receptor hTAS2R39 is the primary receptor for the bitterness of theaflavins.
    Yamazaki T, Sagisaka M, Ikeda R, Nakamura T, Matsuda N, Ishii T, Nakayama T, Watanabe T.
    Biosci Biotechnol Biochem; 2014 Jul 24; 78(10):1753-6. PubMed ID: 25273142
    [Abstract] [Full Text] [Related]

  • 8. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies.
    Glisan SL, Grove KA, Yennawar NH, Lambert JD.
    Food Chem; 2017 Feb 01; 216():296-300. PubMed ID: 27596423
    [Abstract] [Full Text] [Related]

  • 9. Combination of HSCCC and Sephadex LH-20 methods An approach to isolation and purification of the main individual theaflavins from black tea.
    Yang C, Li D, Wan X.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jan 01; 861(1):140-4. PubMed ID: 18063426
    [Abstract] [Full Text] [Related]

  • 10. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment.
    Yu Z, Liao Y, Zeng L, Dong F, Watanabe N, Yang Z.
    Food Res Int; 2020 Mar 01; 129():108842. PubMed ID: 32036878
    [Abstract] [Full Text] [Related]

  • 11. Inhibitory effects of black tea theaflavin derivatives on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and arachidonic acid metabolism in mouse ears.
    Huang MT, Liu Y, Ramji D, Lo CY, Ghai G, Dushenkov S, Ho CT.
    Mol Nutr Food Res; 2006 Feb 01; 50(2):115-22. PubMed ID: 16404705
    [Abstract] [Full Text] [Related]

  • 12. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins.
    Li Y, Shibahara A, Matsuo Y, Tanaka T, Kouno I.
    J Nat Prod; 2010 Jan 01; 73(1):33-9. PubMed ID: 20014758
    [Abstract] [Full Text] [Related]

  • 13. Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent chromatography.
    Wang K, Liu Z, Huang JA, Dong X, Song L, Pan Y, liu F.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 May 15; 867(2):282-6. PubMed ID: 18436487
    [Abstract] [Full Text] [Related]

  • 14. Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes.
    Sirk TW, Brown EF, Sum AK, Friedman M.
    J Agric Food Chem; 2008 Sep 10; 56(17):7750-8. PubMed ID: 18672886
    [Abstract] [Full Text] [Related]

  • 15. The inhibitory effect and mechanism of theaflavins on fluoride transport and uptake in HIEC-6 cell model.
    Huang J, Fan Y, Lei Z, Yu Z, Ni D, Chen Y.
    Food Chem Toxicol; 2023 Aug 10; 178():113939. PubMed ID: 37433353
    [Abstract] [Full Text] [Related]

  • 16. Black tea theaflavins suppress dioxin-induced transformation of the aryl hydrocarbon receptor.
    Fukuda I, Sakane I, Yabushita Y, Sawamura S, Kanazawa K, Ashida H.
    Biosci Biotechnol Biochem; 2005 May 10; 69(5):883-90. PubMed ID: 15914905
    [Abstract] [Full Text] [Related]

  • 17. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved.
    Chung JY, Huang C, Meng X, Dong Z, Yang CS.
    Cancer Res; 1999 Sep 15; 59(18):4610-7. PubMed ID: 10493515
    [Abstract] [Full Text] [Related]

  • 18. The microbiota is essential for the generation of black tea theaflavins-derived metabolites.
    Chen H, Hayek S, Rivera Guzman J, Gillitt ND, Ibrahim SA, Jobin C, Sang S.
    PLoS One; 2012 Sep 15; 7(12):e51001. PubMed ID: 23227227
    [Abstract] [Full Text] [Related]

  • 19. Characteristics of catechin- and theaflavin-mediated cardioprotection.
    Dreger H, Lorenz M, Kehrer A, Baumann G, Stangl K, Stangl V.
    Exp Biol Med (Maywood); 2008 Apr 15; 233(4):427-33. PubMed ID: 18367631
    [Abstract] [Full Text] [Related]

  • 20. Optimization of theaflavin biosynthesis from tea polyphenols using an immobilized enzyme system and response surface methodology.
    Tu YY, Xu XQ, Xia HL, Watanabe N.
    Biotechnol Lett; 2005 Feb 15; 27(4):269-74. PubMed ID: 15742149
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.