These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 21419762
1. Effects of glutathione, Trolox and desferrioxamine on hemoglobin-induced protein oxidative damage: anti-oxidant or pro-oxidant? Lu N, Chen W, Peng YY. Eur J Pharmacol; 2011 Jun 01; 659(2-3):95-101. PubMed ID: 21419762 [Abstract] [Full Text] [Related]
2. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage. Lu N, Chen P, Yang Q, Peng YY. Toxicol In Vitro; 2011 Jun 01; 25(4):833-8. PubMed ID: 21333730 [Abstract] [Full Text] [Related]
3. Peroxynitrite and heme protein--mediated nitrative/oxidative modification of human plasma protein: the role of free radical scavenging vs. complex forming. Lu N, Zhou G, Pei D, Yi L, Gao Z. Toxicol In Vitro; 2009 Oct 01; 23(7):1227-33. PubMed ID: 19654043 [Abstract] [Full Text] [Related]
4. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Kagan VE, Kuzmenko AI, Tyurina YY, Shvedova AA, Matsura T, Yalowich JC. Cancer Res; 2001 Nov 01; 61(21):7777-84. PubMed ID: 11691792 [Abstract] [Full Text] [Related]
7. Acute depletion of reduced glutathione causes extensive carbonylation of rat brain proteins. Bizzozero OA, Ziegler JL, De Jesus G, Bolognani F. J Neurosci Res; 2006 Mar 01; 83(4):656-67. PubMed ID: 16447283 [Abstract] [Full Text] [Related]
8. An in vitro study on the free radical scavenging capacity of ergothioneine: comparison with reduced glutathione, uric acid and trolox. Franzoni F, Colognato R, Galetta F, Laurenza I, Barsotti M, Di Stefano R, Bocchetti R, Regoli F, Carpi A, Balbarini A, Migliore L, Santoro G. Biomed Pharmacother; 2006 Sep 01; 60(8):453-7. PubMed ID: 16930933 [Abstract] [Full Text] [Related]
9. The protective effect of vitamin E, idebenone and reduced glutathione on free radical mediated injury in rat brain synaptosomes. Cardoso SM, Pereira C, Oliveira CR. Biochem Biophys Res Commun; 1998 May 29; 246(3):703-10. PubMed ID: 9618276 [Abstract] [Full Text] [Related]
10. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication. Lu N, Chen W, Zhu J, Peng YY. Toxicol In Vitro; 2012 Feb 29; 26(1):81-5. PubMed ID: 22056765 [Abstract] [Full Text] [Related]
12. Prevention of intracellular oxidation in yeast: the role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid). Raspor P, Plesnicar S, Gazdag Z, Pesti M, Miklavcic M, Lah B, Logar-Marinsek R, Poljsak B. Cell Biol Int; 2005 Jan 29; 29(1):57-63. PubMed ID: 15763500 [Abstract] [Full Text] [Related]
13. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Babizhayev MA. Cell Biochem Funct; 2011 Apr 29; 29(3):183-206. PubMed ID: 21381059 [Abstract] [Full Text] [Related]
14. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury. Hiraishi H, Terano A, Razandi M, Pedram A, Sugimoto T, Harada T, Ivey KJ. J Cell Physiol; 1994 Jul 29; 160(1):132-4. PubMed ID: 8021293 [Abstract] [Full Text] [Related]
15. Reactive oxygen species do not cause arsine-induced hemoglobin damage. Hatlelid KM, Carter DE. J Toxicol Environ Health; 1997 Apr 11; 50(5):463-74. PubMed ID: 9140465 [Abstract] [Full Text] [Related]
16. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers. Apak R, Güçlü K, Ozyürek M, Bektaşoğlu B, Bener M. Methods Mol Biol; 2010 Apr 11; 594():215-39. PubMed ID: 20072920 [Abstract] [Full Text] [Related]
17. Completely different effects of desferrioxamine on hemin/nitrite/H2O2-induced bovine serum albumin nitration and oxidation. Lu N, Zhang M, Li H, Gao Z. Chem Res Toxicol; 2008 Jun 11; 21(6):1229-34. PubMed ID: 18459802 [Abstract] [Full Text] [Related]
18. Inhibition of hydroxyl radical-induced protein damages by trolox. Miura T, Muraoka S, Ogiso T. Biochem Mol Biol Int; 1993 Sep 11; 31(1):125-33. PubMed ID: 8260935 [Abstract] [Full Text] [Related]
19. Impact of trolox, quercetin, genistein and gallic acid on the oxidative damage to myofibrillar proteins: the carbonylation pathway. Utrera M, Estévez M. Food Chem; 2013 Dec 15; 141(4):4000-9. PubMed ID: 23993577 [Abstract] [Full Text] [Related]
20. Advances in metal-induced oxidative stress and human disease. Jomova K, Valko M. Toxicology; 2011 May 10; 283(2-3):65-87. PubMed ID: 21414382 [Abstract] [Full Text] [Related] Page: [Next] [New Search]