These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 21426177

  • 1. Nanotechnology and MRI contrast enhancement.
    Matson ML, Wilson LJ.
    Future Med Chem; 2010 Mar; 2(3):491-502. PubMed ID: 21426177
    [Abstract] [Full Text] [Related]

  • 2. Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites.
    Sitharaman B, Van Der Zande M, Ananta JS, Shi X, Veltien A, Walboomers XF, Wilson LJ, Mikos AG, Heerschap A, Jansen JA.
    J Biomed Mater Res A; 2010 Jun 15; 93(4):1454-62. PubMed ID: 19927368
    [Abstract] [Full Text] [Related]

  • 3. Contrast agents: magnetic resonance.
    Burtea C, Laurent S, Vander Elst L, Muller RN.
    Handb Exp Pharmacol; 2008 Jun 15; (185 Pt 1):135-65. PubMed ID: 18626802
    [Abstract] [Full Text] [Related]

  • 4. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents.
    Tóth E, Bolskar RD, Borel A, González G, Helm L, Merbach AE, Sitharaman B, Wilson LJ.
    J Am Chem Soc; 2005 Jan 19; 127(2):799-805. PubMed ID: 15643906
    [Abstract] [Full Text] [Related]

  • 5. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging.
    Hartman KB, Laus S, Bolskar RD, Muthupillai R, Helm L, Toth E, Merbach AE, Wilson LJ.
    Nano Lett; 2008 Feb 19; 8(2):415-9. PubMed ID: 18215084
    [Abstract] [Full Text] [Related]

  • 6. Gadofullerene MRI contrast agents.
    Bolskar RD.
    Nanomedicine (Lond); 2008 Apr 19; 3(2):201-13. PubMed ID: 18373426
    [Abstract] [Full Text] [Related]

  • 7. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: manipulation of particle size and magnetic resonance imaging capability.
    Hatakeyama W, Sanchez TJ, Rowe MD, Serkova NJ, Liberatore MW, Boyes SG.
    ACS Appl Mater Interfaces; 2011 May 19; 3(5):1502-10. PubMed ID: 21456529
    [Abstract] [Full Text] [Related]

  • 8. Superparamagnetic gadonanotubes are high-performance MRI contrast agents.
    Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tóth E, Helm L, Merbach AE, Wilson LJ.
    Chem Commun (Camb); 2005 Aug 21; (31):3915-7. PubMed ID: 16075070
    [Abstract] [Full Text] [Related]

  • 9. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents.
    Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T.
    J Am Chem Soc; 2011 Aug 17; 133(32):12624-31. PubMed ID: 21744804
    [Abstract] [Full Text] [Related]

  • 10. Gadonanotubes as new high-performance MRI contrast agents.
    Sitharaman B, Wilson LJ.
    Int J Nanomedicine; 2006 Aug 17; 1(3):291-5. PubMed ID: 17717970
    [Abstract] [Full Text] [Related]

  • 11. A novel cholic acid-based contrast enhancement agent for targeted MRI.
    Chong HS, Song HA, Lim S, Macrenaris K, Ma X, Lee H, Bui P, Meade T.
    Bioorg Med Chem Lett; 2008 Apr 01; 18(7):2505-8. PubMed ID: 18337094
    [Abstract] [Full Text] [Related]

  • 12. Iron oxide nanosized clusters embedded in porous nanorods: a new colloidal design to enhance capabilities of MRI contrast agents.
    Rebolledo AF, Laurent S, Calero M, Villanueva A, Knobel M, Marco JF, Tartaj P.
    ACS Nano; 2010 Apr 27; 4(4):2095-103. PubMed ID: 20355739
    [Abstract] [Full Text] [Related]

  • 13. Molecular imaging with targeted contrast agents.
    Makowski MR, Wiethoff AJ, Jansen CH, Botnar RM.
    Top Magn Reson Imaging; 2009 Aug 27; 20(4):247-59. PubMed ID: 20805735
    [Abstract] [Full Text] [Related]

  • 14. The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system.
    Bjørnerud A, Johansson L.
    NMR Biomed; 2004 Nov 27; 17(7):465-77. PubMed ID: 15526351
    [Abstract] [Full Text] [Related]

  • 15. Magnetic iron oxide nanoparticles for biomedical applications.
    Laurent S, Bridot JL, Elst LV, Muller RN.
    Future Med Chem; 2010 Mar 27; 2(3):427-49. PubMed ID: 21426176
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging.
    Langereis S, de Lussanet QG, van Genderen MH, Meijer EW, Beets-Tan RG, Griffioen AW, van Engelshoven JM, Backes WH.
    NMR Biomed; 2006 Feb 27; 19(1):133-41. PubMed ID: 16450331
    [Abstract] [Full Text] [Related]

  • 17. Subcellular Partitioning and Analysis of Gd3+-Loaded Ultrashort Single-Walled Carbon Nanotubes.
    Holt BD, Law JJ, Boyer PD, Wilson LJ, Dahl KN, Islam MF.
    ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14593-602. PubMed ID: 26098461
    [Abstract] [Full Text] [Related]

  • 18. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications.
    Helm L.
    Future Med Chem; 2010 Mar 15; 2(3):385-96. PubMed ID: 21426173
    [Abstract] [Full Text] [Related]

  • 19. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.
    Law JJ, Guven A, Wilson LJ.
    Contrast Media Mol Imaging; 2014 Mar 15; 9(6):409-12. PubMed ID: 24764189
    [Abstract] [Full Text] [Related]

  • 20. Clinical applications of contrast agents in body imaging.
    Bydder GM.
    Top Magn Reson Imaging; 1991 Mar 15; 3(2):74-84. PubMed ID: 2025434
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.