These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
120 related items for PubMed ID: 21430214
1. Slipping, sliding and stability: locomotor strategies for overcoming low-friction surfaces. Clark AJ, Higham TE. J Exp Biol; 2011 Apr 15; 214(Pt 8):1369-78. PubMed ID: 21430214 [Abstract] [Full Text] [Related]
2. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. Daley MA, Usherwood JR, Felix G, Biewener AA. J Exp Biol; 2006 Jan 15; 209(Pt 1):171-87. PubMed ID: 16354788 [Abstract] [Full Text] [Related]
3. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA. J Exp Zool A Comp Exp Biol; 2006 Nov 01; 305(11):899-911. PubMed ID: 17029267 [Abstract] [Full Text] [Related]
7. The anatomy of a slip: Kinetic and kinematic characteristics of slip and non-slip matched trials. McGorry RW, DiDomenico A, Chang CC. Appl Ergon; 2010 Jan 20; 41(1):41-6. PubMed ID: 19427993 [Abstract] [Full Text] [Related]
8. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Fong DT, Mao DW, Li JX, Hong Y. J Biomech; 2008 Jan 20; 41(4):838-44. PubMed ID: 18068710 [Abstract] [Full Text] [Related]
10. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds. Pontzer H. J Exp Biol; 2007 Feb 20; 210(Pt 3):484-94. PubMed ID: 17234618 [Abstract] [Full Text] [Related]
11. Gait mechanics of lemurid primates on terrestrial and arboreal substrates. Franz TM, Demes B, Carlson KJ. J Hum Evol; 2005 Feb 20; 48(2):199-217. PubMed ID: 15701531 [Abstract] [Full Text] [Related]
12. The effect of shoe sole tread groove depth on the gait parameters during walking on dry and slippery surface. Ziaei M, Nabavi SH, Mokhtarinia HR, Tabatabai Ghomshe SF. Int J Occup Environ Med; 2013 Jan 20; 4(1):27-35. PubMed ID: 23279795 [Abstract] [Full Text] [Related]
14. The effect of subject awareness and prior slip experience on tribometer-based predictions of slip probability. Siegmund GP, Heiden TL, Sanderson DJ, Inglis JT, Brault JR. Gait Posture; 2006 Aug 20; 24(1):110-9. PubMed ID: 16171996 [Abstract] [Full Text] [Related]
15. Comparison of utilized coefficient of friction during different walking tasks in persons with and without a disability. Burnfield JM, Tsai YJ, Powers CM. Gait Posture; 2005 Aug 20; 22(1):82-8. PubMed ID: 15996597 [Abstract] [Full Text] [Related]
17. The use of a heel-mounted accelerometer as an adjunct measure of slip distance. McGorry RW, DiDomenico A, Chang CC. Appl Ergon; 2007 May 20; 38(3):369-76. PubMed ID: 16806040 [Abstract] [Full Text] [Related]
18. Biomechanical characteristics of slipping during unconstrained walking, turning, gait initiation and termination. Nagano H, Sparrow WA, Begg RK. Ergonomics; 2013 May 20; 56(6):1038-48. PubMed ID: 23600960 [Abstract] [Full Text] [Related]