These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 21431212

  • 1. A new route for the synthesis of polyhedral gold mesocages and shape effect in single-particle surface-enhanced Raman spectroscopy.
    Fang J, Lebedkin S, Yang S, Hahn H.
    Chem Commun (Camb); 2011 May 14; 47(18):5157-9. PubMed ID: 21431212
    [Abstract] [Full Text] [Related]

  • 2. Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor.
    Fang J, Liu S, Li Z.
    Biomaterials; 2011 Jul 14; 32(21):4877-84. PubMed ID: 21492933
    [Abstract] [Full Text] [Related]

  • 3. Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization.
    Bechelany M, Brodard P, Elias J, Brioude A, Michler J, Philippe L.
    Langmuir; 2010 Sep 07; 26(17):14364-71. PubMed ID: 20715801
    [Abstract] [Full Text] [Related]

  • 4. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R, Lipert RJ, Porter MD.
    Anal Chem; 2008 Mar 15; 80(6):2265-71. PubMed ID: 18290676
    [Abstract] [Full Text] [Related]

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 6. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy.
    Jiang YX, Li JF, Wu DY, Yang ZL, Ren B, Hu JW, Chow YL, Tian ZQ.
    Chem Commun (Camb); 2007 Nov 28; (44):4608-10. PubMed ID: 17989807
    [Abstract] [Full Text] [Related]

  • 7. Peptide mesocrystals as templates to create an Au surface with stronger surface-enhanced Raman spectroscopic properties.
    Su Y, He Q, Yan X, Fei J, Cui Y, Li J.
    Chemistry; 2011 Mar 14; 17(12):3370-5. PubMed ID: 21341331
    [Abstract] [Full Text] [Related]

  • 8. Size-controllable synthesis of surface-enhanced Raman scattering-active gold nanoparticles coated on TiO2.
    Kuo TC, Hsu TC, Liu YC, Yang KH.
    Analyst; 2012 Aug 21; 137(16):3847-53. PubMed ID: 22763981
    [Abstract] [Full Text] [Related]

  • 9. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW, Huan SY, Wu HL, Shen GL, Yu RQ.
    Anal Chem; 2009 Dec 15; 81(24):9902-12. PubMed ID: 19928907
    [Abstract] [Full Text] [Related]

  • 10. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M, Haes AJ.
    J Am Chem Soc; 2008 Oct 29; 130(43):14273-9. PubMed ID: 18831552
    [Abstract] [Full Text] [Related]

  • 11. Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate.
    Baia M, Toderas F, Baia L, Maniu D, Astilean S.
    Chemphyschem; 2009 May 11; 10(7):1106-11. PubMed ID: 19322798
    [Abstract] [Full Text] [Related]

  • 12. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects.
    Wang MH, Hu JW, Li YJ, Yeung ES.
    Nanotechnology; 2010 Apr 09; 21(14):145608. PubMed ID: 20234084
    [Abstract] [Full Text] [Related]

  • 13. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M, Brolo AG.
    Chemphyschem; 2008 Sep 15; 9(13):1899-907. PubMed ID: 18704901
    [Abstract] [Full Text] [Related]

  • 14. Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules.
    Güzel R, Ustündağ Z, Ekşi H, Keskin S, Taner B, Durgun ZG, Turan AA, Solak AO.
    J Colloid Interface Sci; 2010 Nov 01; 351(1):35-42. PubMed ID: 20701922
    [Abstract] [Full Text] [Related]

  • 15. Plasmonic heating assisted deposition of bare Au nanoparticles on titania nanoshells.
    Alessandri I.
    J Colloid Interface Sci; 2010 Nov 15; 351(2):576-9. PubMed ID: 20800851
    [Abstract] [Full Text] [Related]

  • 16. Controllable synthesis of water-soluble gold nanoparticles and their applications in electrocatalysis and surface-enhanced Raman scattering.
    Qiao Y, Chen H, Lin Y, Huang J.
    Langmuir; 2011 Sep 06; 27(17):11090-7. PubMed ID: 21761928
    [Abstract] [Full Text] [Related]

  • 17. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y, Ueno K, Misawa H.
    Chem Commun (Camb); 2011 Mar 28; 47(12):3505-7. PubMed ID: 21318204
    [Abstract] [Full Text] [Related]

  • 18. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy.
    Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ.
    J Phys Chem B; 2006 Mar 09; 110(9):4002-6. PubMed ID: 16509689
    [Abstract] [Full Text] [Related]

  • 19. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.
    Lu L, Ai K, Ozaki Y.
    Langmuir; 2008 Feb 05; 24(3):1058-63. PubMed ID: 18177060
    [Abstract] [Full Text] [Related]

  • 20. Detection of human serum albumin through surface-enhanced Raman scattering using gold "pearl necklace" nanomaterials as substrates.
    Lin ZH, Chen IC, Chang HT.
    Chem Commun (Camb); 2011 Jul 07; 47(25):7116-8. PubMed ID: 21614397
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.